Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 4 / 4

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Data from: Short-term, but not long-term, increased daytime workload leads to decreased night-time energetics in a free-living song bird
    Visser, Marcel E. ; Dooremalen, Coby van; Tomotani, Barbara ; Bushuev, Andrey ; Meijer, Harro A.J. ; Marvelde, Luc Te; Gienapp, Phillip - \ 2019
    Dryad
    compensation hypothesis - Anthropocene - Ficedula hypoleuca - increased-intake hypothesis - daily energy expenditure - pied flycatcher - feeding frequency - basal metabolic rate
    Reproduction is energetically expensive and to obtain sufficient energy, animals can either alter their metabolic system over time to increase energy intake (increased-intake hypothesis) or reallocate energy from maintenance processes (compensation hypothesis). The first hypothesis predicts a positive relationship between basal metabolic rate (BMR) and energy expenditure (DEE) because of the higher energy demands of the metabolic system at rest. The second hypothesis predicts a trade-off between different body functions, with a reduction of the BMR as a way to compensate for increased daytime energetic expenditure. We experimentally manipulated the workload of wild pied flycatchers by adding or removing chicks when chicks were 2 and 11 days old. We then measured the feeding frequency (FF), DEE and BMR at day 11, allowing us to assess both short- and long-term effects of increased workload. The manipulation at day 2 caused an increase in FF when broods were enlarged, but no response in DEE or BMR, while the manipulation at day 11 caused an increase in FF, no change in DEE and a decrease in BMR in birds with more chicks. Our results suggest that pied flycatchers adjust their workload but that this does not lead to a higher BMR at night (no support for the increased intake hypothesis). In the short term, we found that birds reallocate energy with a consequent reduction of BMR (evidence for the compensation hypothesis). Birds thus resort to short-term strategies to increase energy expenditure, which could explain why energy expenditure and hard work are not always correlated in birds.
    Short-term, but not long-term, increased daytime workload leads to decreased night-time energetics in a free-living song bird
    Visser, Marcel E. ; Dooremalen, Coby van; Tomotani, Barbara M. ; Bushuev, Andrey ; Meijer, Harro A.J. ; Marvelde, Luc te; Gienapp, Phillip - \ 2019
    Journal of Experimental Biology 222 (2019). - ISSN 0022-0949
    Basal metabolic rate - Compensation hypothesis - Daily energy expenditure - Feeding frequency - Ficedula hypoleuca - Increased-intake hypothesis

    Reproduction is energetically expensive and to obtain sufficient energy, animals can either alter their metabolic system over time to increase energy intake (increased-intake hypothesis) or reallocate energy from maintenance processes (compensation hypothesis). The first hypothesis predicts a positive relationship between basal metabolic rate (BMR) and energy expenditure (DEE) because of the higher energy demands of the metabolic system at rest. The second hypothesis predicts a trade-off between different body functions, with a reduction of the BMR as a way to compensate for increased daytime energetic expenditure. We experimentally manipulated the workload of wild pied flycatchers by adding or removing chicks when chicks were 2 and 11 days old. We then measured the feeding frequency (FF), DEE and BMR at day 11, allowing us to assess both short- and long-term effects of increased workload. The manipulation at day 2 caused an increase in FF when broods were enlarged, but no response in DEE or BMR, while the manipulation at day 11 caused an increase in FF, no change in DEE and a decrease in BMR in birds with more chicks. Our results suggest that pied flycatchers adjust their workload but that this does not lead to a higher BMR at night (no support for the increased-intake hypothesis). In the short term, we found that birds reallocate energy with a consequent reduction of BMR (evidence for the compensation hypothesis). Birds thus resort to short-term strategies to increase energy expenditure, which could explain why energy expenditure and hard work are not always correlated in birds.

    Data from: A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle-of-attack
    Mizumo Tomotani, Barbara ; Muijres, F.T. - \ 2019
    European pied flycatcher - avian flight - wingbeat kinematics - Ficedula hypoleuca
    During molt, birds replace their feathers to retain feather quality and maintain flight performance. However, wing gaps inherent of this process can also reduce flight capacities, which could be detrimental when foraging or escaping predators. Still, many bird species will not stop their normal activities when molting. In this study, we investigated whether and how birds adjust their escape flight behavior to compensate for the reduction in performance when flying with wing gaps. Using stereoscopic high-speed videography, we filmed 146 upward-directed escape flights of 19 and 22 pied flycatchers (Ficedula hypoleuca) with and without simulated molt gaps, respectively. We then reconstructed the three-dimensional body and wing movements throughout each maneuver. By comparing flights with and without gaps, we determined how wing molt gaps affected wing morphology, escape flight performance, and how the birds adjusted their flight kinematics in order to negate possible negative aerodynamic effects. Our manipulations resulted in a lower second-moment-of-area of the wings, but flight speed and net aerodynamic force production did not differ between the two groups. We found that in manipulated birds, the size of the gap was reduced as the flight feathers adjacent to the gap had moved towards each other. Moreover, the experimental decrease in second-moment-of-area was associated with an increase in angle-of-attack, whereas changes in wingbeat-induced speeds were associated with variations in aerodynamic force production. This suggests that the control of escape flight in molting birds might be modular, allowing relatively simple flight control, thus reducing the burden on the neuro-muscular flight control system.
    Data from: Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant
    Mizumo Tomotani, Barbara ; Muijres, F.T. ; Koelman, Julia ; Casagrande, Stefania ; Visser, Marcel E. - \ 2017
    NIOO-KNAW
    trade-off - pied flycatcher - high-speed camera - parental care - PIT-TAG - oxidative stress - plumage - Ficedula hypoleuca
    1. Long-distance migrants are time-constrained as they need to incorporate many annual cycle stages within a year. Migratory passerines moult in the short interval between breeding and migration. To widen this interval, moult may start while still breeding, but this results in flying with moulting wings when food provisioning. 2. We experimentally simulated wing gaps in breeding male pied flycatchers by plucking 2 primary feathers from both wings. We quantified the nest visitations of both parents, proportion of high-quality food brought to the nestlings and adults and nestlings condition. Differences in oxidative damage caused by a possible reduction in flight efficiency were measured in amounts of ROMs and OXY in the blood. We also measured how flight performance was affected with recordings of the male`s escape flight using high-speed cameras. Finally, we collected data on adult survival, clutch size and laying date in the following year. 3. “Plucked” males travelled a 5% shorter distance per wingbeat, showing that our treatment reduced flight performance. In line with this, “plucked” males visited their nests less often. Females of “plucked” males, however, visited the nest more often than controls, and fully compensated their partner’s reduced visitation rate. As a result, there were no differences between treatments in food quality brought to the nest, adult or chick mass or number of successfully fledged chicks. Males did not differ in their oxidative damage or local survival to the following year. In contrast, females paired with plucked males tended to return less often to breed in the next year in comparison to controls, but this difference was not significant. For the birds that did return there were no effects on breeding. 5. Our results reveal that wing gaps in male pied flycatchers reduce their flight performance, but when it occurs during breeding they prioritise their future reproduction by reducing parental care. As a result, there is no apparent detriment to their condition during breeding. Because non-moulting females are able to compensate their partner’s reduced care, there is also no immediate costs to the offspring, but females may pay the cost suffering from a reduced survival.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.