Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 3 / 3

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Genetic modification
Check title to add to marked list
Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in europe
Jouanin, Aurélie ; Boyd, Lesley ; Visser, Richard G.F. ; Smulders, Marinus J.M. - \ 2018
Frontiers in Plant Science 871 (2018). - ISSN 1664-462X
Coeliac disease - Genetic modification - GM regulation - Innovation principle - Mutation breeding - New plant breeding technique - Public acceptance - Risk assessment

Coeliac Disease (CD) is an auto-immune reaction to gluten in 1–2% of the human population. A gluten-free (GF) diet, excluding wheat, barley, and rye, is the only remedy. This diet is difficult to adhere to, partly because wheat gluten is added to many processed products for their viscoelastic properties. In addition, GF products are less healthy and expensive. Wheat products containing only hypoimmunogenic gluten proteins would be a desirable option. Various gluten peptides that trigger CD have been characterized. A single wheat variety contains around hundred gluten genes, producing proteins with varying numbers of epitopes. Gene editing using CRISPR/Cas9 can precisely remove or modify the DNA sequences coding for immunogenic peptides. Wheat with hypoimmunogenic gluten thus exemplifies the potential of gene editing for improving crops for human consumption where conventional breeding cannot succeed. We describe here, in relation to breeding hypoimmunogenic wheat varieties, the inconsistencies of applying GM regulation in Europe for gene-edited plants while mutation breeding-derived plants are exempted. We explain that healthy products derived from this new technology may become available in the United States, Canada, Argentina and other countries but not in Europe, because of strict regulation of unintended GM risk at the expense of reduction the existing immunogenicity risks of patients. We argue that regulation of gene-edited plants should be based on scientific evidence. Therefore, we strongly recommend implementing the innovation principle. Responsible Research and Innovation, involving stakeholders including CD patient societies in the development of gene-editing products, will enable progress toward healthy products and encourage public acceptance.

Effects of a genetically modified potato on a non-target aphid are outweighed by cultivar differences
Lazebnik, Jenny ; Arpaia, Salvatore ; Baldacchino, Ferdinando ; Banzato, Paolo ; Moliterni, Stefania ; Vossen, Jack H. ; Zande, Els M. van de; Loon, Joop J.A. van - \ 2017
Journal of Pest Science 90 (2017)3. - ISSN 1612-4758 - p. 855 - 864.
Environmental risk assessment - Genetic modification - Greenhouse - Myzus persicae - Non-target testing - Phytophthora infestans - Solanum tuberosum
Insect–plant interactions may be unintentionally affected when introducing genetically modified (GM) crops into an agro-ecosystem. Our aim was to test the non-target effects of a late blight-resistant GM potato on Myzus persicae in greenhouse and climate room experiments and understand how position and number of R gene insertions can affect non-targets in GM events. We also aimed to compare results to baseline differences among three conventional potato varieties varying in resistance to late blight. Aphid development and survival were affected by some GM events in the first generation, though effects disappeared in the second generation. Effects were not dependent on the presence of a marker gene or the insertion of a second resistance gene. Positional effects of gene insertion influenced aphid performance on certain GM events. However, aphid fitness varied considerably more between conventional potato varieties than between Désirée and the GM events. Comparing different GM events to the non-transformed variety is relevant, since unintended effects of insertion can occur. Our protocols can be recommended for in planta risk assessments with aphids. Ecological perspective is gained by selecting several measured endpoints and by comparing the results with a baseline of conventional cultivars.
Requirements and comparative analysis of reverse genetics for bluetongue virus (BTV) and African horse sickness virus (AHSV)
Rijn, Piet A. van; Water, Sandra G.P. van de; Feenstra, Femke ; Gennip, René G.P. van - \ 2016
Virology journal 13 (2016)1. - ISSN 1743-422X
African horse sickness virus - Bluetongue virus - dsRNA - Genetic modification - Orbivirus - Reassortment - Reoviridae - Reverse genetics

Background: Bluetongue virus (BTV) and African horse sickness virus (AHSV) are distinct arthropod borne virus species in the genus Orbivirus (Reoviridae family), causing the notifiable diseases Bluetongue and African horse sickness of ruminants and equids, respectively. Reverse genetics systems for these orbiviruses with their ten-segmented genome of double stranded RNA have been developed. Initially, two subsequent transfections of in vitro synthesized capped run-off RNA transcripts resulted in the recovery of BTV. Reverse genetics has been improved by transfection of expression plasmids followed by transfection of ten RNA transcripts. Recovery of AHSV was further improved by use of expression plasmids containing optimized open reading frames. Results: Plasmids containing full length cDNA of the 10 genome segments for T7 promoter-driven production of full length run-off RNA transcripts and expression plasmids with optimized open reading frames (ORFs) were used. BTV and AHSV were rescued using reverse genetics. The requirement of each expression plasmid and capping of RNA transcripts for reverse genetics were studied and compared for BTV and AHSV. BTV was recovered by transfection of VP1 and NS2 expression plasmids followed by transfection of a set of ten capped RNAs. VP3 expression plasmid was also required if uncapped RNAs were transfected. Recovery of AHSV required transfection of VP1, VP3 and NS2 expression plasmids followed by transfection of capped RNA transcripts. Plasmid-driven expression of VP4, 6 and 7 was also needed when uncapped RNA transcripts were used. Irrespective of capping of RNA transcripts, NS1 expression plasmid was not needed for recovery, although NS1 protein is essential for virus propagation. Improvement of reverse genetics for AHSV was clearly demonstrated by rescue of several mutants and reassortants that were not rescued with previous methods. Conclusions: A limited number of expression plasmids is required for rescue of BTV or AHSV using reverse genetics, making the system much more versatile and generally applicable. Optimization of reverse genetics enlarge the possibilities to rescue virus mutants and reassortants, and will greatly benefit the control of these important diseases of livestock and companion animals.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.