Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Grey-zone
Check title to add to marked list
Assessment of MPAS variable resolution simulations in the grey-zone of convection against WRF model results and observations : An MPAS feasibility study of three extreme weather events in Europe
Kramer, Matthijs ; Heinzeller, Dominikus ; Hartmann, Hugo ; Berg, Wim van den; Steeneveld, Gert Jan - \ 2018
Climate Dynamics (2018). - ISSN 0930-7575 - p. 1 - 24.
Convection-permitting forecast - Föhn - Grey-zone - Hail - MPAS - Numerical weather prediction - Voronoi grid - WRF

Regional weather forecasting models like the Weather Research and Forecasting (WRF) model allow for nested domains to save computational effort and provide detailed results for mesoscale weather phenomena. The sudden resolution change by nesting may cause artefacts in the model results. On the contrary, the novel global Model for Prediction Across Scales (MPAS) runs on Voronoi meshes that allow for smooth resolution transition towards the desired high resolution in the region of interest. This minimises the resolution-related artefacts, while still saving computational effort. We evaluate the MPAS model over Europe focussing on three mesoscale weather events: a synoptic gale over the North Sea, a föhn effect in Switzerland, and a case of organised convection with hail over the Netherlands. We use four different MPAS meshes (60 km global refined to-3 km (60– 3 km), analogous 30–3 km, 15–3 km, global 3 km) and compare their results to routine observations and a WRF setup with a single domain of 3 km grid spacing. We also discuss the computational requirements for the different MPAS meshes and the operational WRF setup. In general, the MPAS 3 km and WRF model results correspond to the observations. However, a global model at 3 km resolution as a replacement for WRF is not feasible for operational use. More importantly, all variable-resolution meshes employed in this study show comparable skills in short-term forecasting within the high-resolution area at considerably lower computational costs.

Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.