Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 14 / 14

    • help
    • print

      Print search results

    • export

      Export search results

    • alert
      We will mail you new results for this query: keywords==Microplastics
    Check title to add to marked list
    Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils
    Berg, Pim van den; Huerta-Lwanga, Esperanza ; Corradini, Fabio ; Geissen, Violette - \ 2020
    Environmental Pollution 261 (2020). - ISSN 0269-7491
    Agricultural soils - Microplastics - Sewage sludge

    Microplastic pollution is becoming a major challenge with the growing use of plastic. In recent years, research about microplastic pollution in the environment has become a field of study with increased interest, with ever expanding findings on sources, sinks and pathways of microplastics. Wastewater treatment plants effectively remove microplastics from wastewater and concentrate them in sewage sludge which is often used to fertilise agricultural fields. Despite this, quantification of microplastic pollution in agricultural fields through the application of sewage sludge is largely unknown. In light of this issue, four wastewater treatment plants and 16 agricultural fields (0–8 sewage sludge applications of 20–22 tons ha−1 per application), located in the east of Spain, were sampled. Microplastics were extracted using a floatation and filtration method, making a distinction between light density microplastics (ρ < 1 g cm−3) and heavy density microplastics (ρ > 1 g cm−3). Sewage sludge, on average, had a light density plastic load of 18,000 ± 15,940 microplastics kg−1 and a heavy density plastic load of 32,070 ± 19,080 microplastics kg−1. Soils without addition of sewage sludge had an average light density plastic load of 930 ± 740 microplastics kg−1 and a heavy density plastic load of 1100 ± 570 microplastics kg−1. Soils with addition of sewage sludge had an average light density plastic load of 2130 ± 950 microplastics kg−1 and a heavy density plastic load of 3060 ± 1680 microplastics kg−1. On average, soils’ plastic loads increased by 280 light density microplastics kg−1 and 430 heavy density microplastics kg−1 with each successive application of sewage sludge, indicating that sewage sludge application results in accumulation of microplastics in agricultural soils. Microplastics concentrations in soils are highly proportional to the number of sludge applications.

    Effects of plastic mulch film residues on wheat rhizosphere and soil properties
    Qi, Yueling ; Ossowicki, Adam ; Yang, Xiaomei ; Huerta Lwanga, Esperanza ; Dini-Andreote, Francisco ; Geissen, Violette ; Garbeva, Paolina - \ 2020
    Journal of Hazardous Materials 387 (2020). - ISSN 0304-3894
    Biodegradable plastics - Microplastics - Rhizosphere microbiome - Soil properties - Volatile organic compounds

    Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional and biodegradable plastic films on the soil-plant system are not well studied. In this study, we used a controlled pot experiment to investigate the effects of macro- and micro- sized residues of low-density polyethylene and biodegradable plastic mulch films on the rhizosphere bacterial communities, rhizosphere volatile profiles and soil chemical properties. Interestingly, we identified significant effects of biodegradable plastic residues on the rhizosphere bacterial communities and on the blend of volatiles emitted in the rhizosphere. For example, in treatments with biodegradable plastics, bacteria genera like Bacillus and Variovorax were present in higher relative abundances and volatile compounds like dodecanal were exclusively produced in treatment with biodegradable microplastics. Furthermore, significant differences in soil pH, electrical conductivity and C:N ratio were observed across treatments. Our study provides evidence for both biotic and abiotic impacts of plastic residues on the soil-plant system, suggesting the urgent need for more research examining their environmental impacts on agroecosystems.

    Modelling global river export of microplastics to the marine environment : Sources and future trends
    Wijnen, Jikke van; Ragas, Ad M.J. ; Kroeze, Carolien - \ 2019
    Science of the Total Environment 673 (2019). - ISSN 0048-9697 - p. 392 - 401.
    Coastal seas - Future scenarios - GREMiS model - Microplastics - Plastic soup - River transport

    Microplastics, transported by rivers to oceans, are triggering environmental concern. This study aims to better understand river export of microplastics from land to sea. We developed the Global Riverine Export of Microplastics into Seas (GREMiS) model, a global, spatially explicit model for analysing the annual microplastics export to coastal seas. Our results indicate that riverine microplastics export varies among world regions, with several hotspots, e.g., South East Asia, and, depending on the 2050 scenario, may be doubled (‘Business as usual’) or halved due to improved waste management (‘Environment profits’). Globally, our model simulations indicated fragmentation of macroplastics as the main source of microplastics, but this result heavily depends on the assumed fragmentation rate. Sewerage discharges contributed only 20%, ranging from 1% (Africa) to 60% (OECD countries) and decreasing by 2050 as a result of improved sanitation. We conclude that, combating microplastics in the aquatic environment requires more region-specific analyses.

    Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal
    Corradini, Fabio ; Meza, Pablo ; Eguiluz, Raúl ; Casado, Francisco ; Huerta-Lwanga, Esperanza ; Geissen, Violette - \ 2019
    Science of the Total Environment 671 (2019). - ISSN 0048-9697 - p. 411 - 420.
    Agricultural soil - Diffuse pollution - Microplastics - Sludge - Waste management

    Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha −1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g −1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g −1 , with a median of 34 particles g −1 . The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.

    Microplastics in freshwaters and drinking water: Critical review and assessment of data quality
    Koelmans, Albert A. ; Mohamed Nor, Nur Hazimah ; Hermsen, Enya ; Kooi, Merel ; Mintenig, Svenja M. ; France, Jennifer De - \ 2019
    Water Research 155 (2019). - ISSN 0043-1354 - p. 410 - 422.
    Drinking water - Human health - Microplastics - Surface water - Waste water
    Microplastics have recently been detected in drinking water as well as in drinking water sources. This presence has triggered discussions on possible implications for human health. However, there have been questions regarding the quality of these occurrence studies since there are no standard sampling, extraction and identification methods for microplastics. Accordingly, we assessed the quality of fifty studies researching microplastics in drinking water and in its major freshwater sources. This includes an assessment of microplastic occurrence data from river and lake water, groundwater, tap water and bottled drinking water. Studies of occurrence in wastewater were also reviewed. We review and propose best practices to sample, extract and detect microplastics and provide a quantitative quality assessment of studies reporting microplastic concentrations. Further, we summarize the findings related to microplastic concentrations, polymer types and particle shapes. Microplastics are frequently present in freshwaters and drinking water, and number concentrations spanned ten orders of magnitude (1 × 10−2to 108#/m3) across individual samples and water types. However, only four out of 50 studies received positive scores for all proposed quality criteria, implying there is a significant need to improve quality assurance of microplastic sampling and analysis in water samples. The order in globally detected polymers in these studies is PE ≈ PP > PS > PVC > PET, which probably reflects the global plastic demand and a higher tendency for PVC and PET to settle as a result of their higher densities. Fragments, fibres, film, foam and pellets were the most frequently reported shapes. We conclude that more high quality data is needed on the occurrence of microplastics in drinking water, to better understand potential exposure and to inform human health risk assessments.
    Biogenic transport of glyphosate in the presence of LDPE microplastics : A mesocosm experiment
    Yang, Xiaomei ; Lwanga, Esperanza Huerta ; Bemani, Akram ; Gertsen, Hennie ; Salanki, Tamas ; Guo, Xuetao ; Fu, Haimei ; Xue, Sha ; Ritsema, Coen ; Geissen, Violette - \ 2019
    Environmental Pollution 245 (2019). - ISSN 0269-7491 - p. 829 - 835.
    Earthworm burrows - Glyphosate transport - Microplastics - Soil ecosystem

    The accumulation of plastic debris and herbicide residues has become a huge challenge and poses many potential risks to environmental health and soil quality. In the present study, we investigated the transport of glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA) via earthworms in the presence of different concentrations of light density polyethylene microplastics in the litter layer during a 14-day mesocosm experiment. The results showed earthworm gallery weight was negatively affected by the combination of glyphosate and microplastics. Glyphosate and AMPA concentrated in the first centimetre of the top soil layer and the downward transport of glyphosate and AMPA was only detected in the earthworm burrows, ranging from 0.04 to 4.25 μg g−1 for glyphosate and from 0.01 (less than limit of detection) to 0.76 μg g−1 for AMPA. The transport rate of glyphosate (including AMPA) from the litter layer into earthworm burrows ranged from 6.6 ± 4.6% to 18.3 ± 2.4%, depending on synergetic effects of microplastics and glyphosate application. The findings imply that earthworm activities strongly influence pollutant movement into the soil, which potentially affects soil ecosystems. Further studies focused on the fate of pollutants in the microenvironment of earthworm burrows are needed. Glyphosate was mainly transported into deeper soil layers via earthworm galleries which were influenced by synergetic effects of microplastics and glyphosate application.

    Predicting soil microplastic concentration using vis-NIR spectroscopy
    Corradini, Fabio ; Bartholomeus, Harm ; Huerta Lwanga, Esperanza ; Gertsen, Hennie ; Geissen, Violette - \ 2019
    Science of the Total Environment 650 (2019). - ISSN 0048-9697 - p. 922 - 932.
    Microplastics - Near-infrared spectroscopy - Soil pollution - Spectroradiometer - Vis-NIR

    Microplastic accumulation in soil may have a detrimental impact on soil biota. The lack of standardized methods to identify and quantify microplastics in soils is an obstacle to research. Existing techniques are time-consuming and field data are seldom collected. To tackle the problem, we explored the possibilities of using a portable spectroradiometer working in the near infrared range (350–2500 nm) to rapidly assess microplastic concentrations in soils without extraction. Four sets of artificially polluted soil samples were prepared. Three sets had only one polymer polluting the soil (low-density polyethylene (LDPE), polyethylene terephthalate (PET), or polyvinyl chloride (PVC)). The fourth set contained random amounts of the three polymers (Mix). The concentrations of microplastics were regressed on the reflectance observed for each of the 2150 wavelengths registered by the instrument, using a Bayesian approach. For a measurement range between 1 and 100 g kg−1, results showed a root-mean-squared-deviation (RMSD) of 8, 18, and 10 g kg−1 for LDPE, PET, and PVC. The Mix treatment presented an RMSD of 8, 10, and 5 g kg−1 for LDPE, PET, and PVC. The repeatability of the proposed method was 0.2–8.4, 0.1–5.1, and 0.1–9.0 g kg−1 for LDPE, PET, and PVC, respectively. Overall, our results suggest that vis-NIR techniques are suitable to identify and quantify LDPE, PET, and PVC microplastics in soil samples, with a 10 g kg−1 accuracy and a detection limit ≈ 15 g kg−1. The method proposed is different than other approaches since it is faster because it avoids extraction steps and can directly quantify the amount of plastic in a sample. Nevertheless, it seems to be useful only for pollution hotspots.

    Macro- and micro- plastics in soil-plant system : Effects of plastic mulch film residues on wheat (Triticum aestivum) growth
    Qi, Yueling ; Yang, Xiaomei ; Pelaez, Amalia Mejia ; Huerta Lwanga, Esperanza ; Beriot, Nicolas ; Gertsen, Henny ; Garbeva, Paolina ; Geissen, Violette - \ 2018
    Science of the Total Environment 645 (2018). - ISSN 0048-9697 - p. 1048 - 1056.
    Agroecosystem - Biodegradable mulch film - Microplastics - Plant growth - Plastic residues

    Plastic residues have become a serious environmental problem in the regions with intensive use of plastic mulching. Even though plastic mulch is widely used, the effects of macro- and micro- plastic residues on the soil-plant system and the agroecosystem are largely unknown. In this study, low density polyethylene and one type of starch-based biodegradable plastic mulch film were selected and used as examples of macro- and micro- sized plastic residues. A pot experiment was performed in a climate chamber to determine what effect mixing 1% concentration of residues of these plastics with sandy soil would have on wheat growth in the presence and absence of earthworms. The results showed that macro- and micro- plastic residues affected both above-ground and below-ground parts of the wheat plant during both vegetative and reproductive growth. The type of plastic mulch films used had a strong effect on wheat growth with the biodegradable plastic mulch showing stronger negative effects as compared to polyethylene. The presence of earthworms had an overall positive effect on the wheat growth and chiefly alleviated the impairments made by plastic residues.

    The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax)
    Granby, Kit ; Rainieri, Sandra ; Rasmussen, Rie Romme ; Kotterman, Michiel J.J. ; Sloth, Jens Jørgen ; Cederberg, Tommy Licht ; Barranco, Alex ; Marques, António ; Larsen, Bodil Katrine - \ 2018
    Environmental Research 164 (2018). - ISSN 0013-9351 - p. 430 - 443.
    Elimination - Gene expression - Microplastics - PBDE - PCB
    When microplastics pollute fish habitats, it may be ingested by fish, thereby contaminating fish with sorbed contaminants. The present study investigates how combinations of halogenated contaminants and microplastics associated with feed are able to alter toxicokinetics in European seabass and affect the fish. Microplastic particles (2%) were added to the feed either with sorbed contaminants or as a mixture of clean microplastics and chemical contaminants, and compared to feed containing contaminants without microplastics. For the contaminated microplastic diet, the accumulation of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in fish was significantly higher, increasing up to 40 days of accumulation and then reversing to values comparable to the other diets at the end of accumulation. The significant gene expression results of liver (cyp1a, il1β gstα) after 40 days of exposure indicate that microplastics might indeed exacerbate the toxic effects (liver metabolism, immune system, oxidative stress) of some chemical contaminants sorbed to microplastics. Seabass quickly metabolised BDE99 to BDE47 by debromination, probably mediated by deiodinase enzymes, and unlike other contaminants, this metabolism was unaffected by the presence of microplastics. For the other PCBs and BFRs, the elimination coefficients were significantly lower in fish fed the diet with contaminants sorbed to microplastic compared to the other diets. The results indicate that microplastics affects liver detoxification and lipid distribution, both of which affect the concentration of contaminants.
    Modeling the fate and transport of plastic debris in freshwaters : Review and Guidance
    Kooi, Merel ; Besseling, Ellen ; Kroeze, Carolien ; Wenzel, Annemarie P. van; Koelmans, Albert A. - \ 2018
    In: Freshwater Microplastics Springer Verlag (Handbook of Environmental Chemistry ) - ISBN 9783319616148 - p. 125 - 152.
    Fate - Freshwater - Microplastics - Modeling - Nanoplastics
    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement information from measurements and will play an important role in the prospective risk assessment of plastic debris. We review the present knowledge with respect to fate and transport modeling of plastic debris in freshwater catchment areas, focusing especially on nano- and microplastics. Starting with a brief overview of theory and models for nonplastic particles, we discuss plastic-specific properties, processes, and existing mass-balance-, multimedia-, and spatiotemporally explicit fate models. We find that generally many theoretical and conceptual approaches from models developed earlier for other types of (low density) particles apply also to plastic debris. A unique feature of plastic debris, however, is its combination of high persistence, low density, and extremely wide size distribution, ranging from the nanometer to the >cm scale. This causes the system behavior of plastic debris to show a far wider variety than most other materials or chemicals. We provide recommendations for further development of these models and implications and guidance for how fate and transport models can be used in a framework for the tiered risk assessment of plastic debris.
    Modeling the fate and transport of plastic debris in fresh waters. Review and guidance
    Kooi, M. ; Besseling, E. ; Kroeze, C. ; Wenzel, A.P. van; Koelmans, A.A. - \ 2018
    In: Freshwater Microplastics / Wagner, M., Lambert, S., Springer (The Handbook of Environmental Chemistry ) - ISBN 9783319616155 - p. 125 - 152.
    Fate - Freshwater - Microplastics - Modeling - Nanoplastics
    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement information from measurements and will play an important role in the prospective risk assessment of plastic debris. We review the present knowledge with respect to fate and transport modeling of plastic debris in freshwater catchment areas, focusing especially on nano- and microplastics. Starting with a brief overview of theory and models for nonplastic particles, we discuss plastic-specific properties, processes, and existing mass-balance-, multimedia-, and spatiotemporally explicit fate models. We find that generally many theoretical and conceptual approaches from models developed earlier for other types of (low density) particles apply also to plastic debris. A unique feature of plastic debris, however, is its combination of high persistence, low density, and extremely wide size distribution, ranging from the nanometer to the >cm scale. This causes the system behavior of plastic debris to show a far wider variety than most other materials or chemicals. We provide recommendations for further development of these models and implications and guidance for how fate and transport models can be used in a framework for the tiered risk assessment of plastic debris.
    Aging of microplastics promotes their ingestion by marine zooplankton
    Vroom, Renske J.E. ; Koelmans, Bart ; Besseling, Ellen ; Halsband, C. - \ 2017
    Environmental Pollution 231 (2017). - ISSN 0269-7491 - p. 987 - 996.
    Biofouling - Ingestion - Marine - Microplastics - Zooplankton
    Microplastics (<5 mm) are ubiquitous in the marine environment and are ingested by zooplankton with possible negative effects on survival, feeding, and fecundity. The majority of laboratory studies has used new and pristine microplastics to test their impacts, while aging processes such as weathering and biofouling alter the characteristics of plastic particles in the marine environment. We investigated zooplankton ingestion of polystyrene beads (15 and 30 μm) and fragments (≤30 μm), and tested the hypothesis that microplastics previously exposed to marine conditions (aged) are ingested at higher rates than pristine microplastics. Polystyrene beads were aged by soaking in natural local seawater for three weeks. Three zooplankton taxa ingested microplastics, excluding the copepod Pseudocalanus spp., but the proportions of individuals ingesting plastic and the number of particles ingested were taxon and life stage specific and dependent on plastic size. All stages of Calanus finmarchicus ingested polystyrene fragments. Aged microbeads were preferred over pristine ones by females of Acartia longiremis as well as juvenile copepodites CV and adults of Calanus finmarchicus. The preference for aged microplastics may be attributed to the formation of a biofilm. Such a coating, made up of natural microbes, may contain similar prey as the copepods feed on in the water column and secrete chemical exudates that aid chemodetection and thus increase the attractiveness of the particles as food items. Much of the ingested plastic was, however, egested within a short time period (2–4 h) and the survival of adult Calanus females was not affected in an 11-day exposure. Negative effects of microplastics ingestion were thus limited. Our findings emphasize, however, that aging plays an important role in the transformation of microplastics at sea and ingestion by grazers, and should thus be considered in future microplastics ingestion studies and estimates of microplastics transfer into the marine food web.
    The effect of particle properties on the depth profile of buoyant plastics in the ocean
    Kooi, Merel ; Reisser, J. ; Slat, B. ; Ferrari, F. ; Schmid, M. ; Cunsolo, S. ; Brambini, R. ; Noble, K. ; Sirks, L.A. ; Linders, T.E.W. ; Schoeneich-Argent, R.I. ; Koelmans, A.A. - \ 2016
    Plastic pollution - Marine debris - Marine litter - Microplastics
    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
    A critical view on microplastic quantification in aquatic organisms
    Vandermeersch, Griet ; Cauwenberghe, Lisbeth Van; Janssen, Colin R. ; Marques, Antonio ; Granby, Kit ; Fait, Gabriella ; Kotterman, M.J.J. ; Diogène, Jorge ; Bekaert, Karen ; Robbens, Johan ; Devriese, Lisa - \ 2015
    Environmental Research 143 (2015)part B. - ISSN 0013-9351 - p. 46 - 55.
    Contamination - Food safety - Microplastics - Mussel - Seafood

    Microplastics, plastic particles and fragments smaller than 5mm, are ubiquitous in the marine environment. Ingestion and accumulation of microplastics have previously been demonstrated for diverse marine species ranging from zooplankton to bivalves and fish, implying the potential for microplastics to accumulate in the marine food web. In this way, microplastics can potentially impact food safety and human health. Although a few methods to quantify microplastics in biota have been described, no comparison and/or intercalibration of these techniques have been performed. Here we conducted a literature review on all available extraction and quantification methods. Two of these methods, involving wet acid destruction, were used to evaluate the presence of microplastics in field-collected mussels (Mytilus galloprovincialis) from three different "hotspot" locations in Europe (Po estuary, Italy; Tagus estuary, Portugal; Ebro estuary, Spain). An average of 0.18±0.14 total microplastics g-1 w.w. for the Acid mix Method and 0.12±0.04 total microplastics g-1 w.w. for the Nitric acid Method was established. Additionally, in a pilot study an average load of 0.13±0.14 total microplastics g-1 w.w. was recorded in commercial mussels (Mytilus edulis and M. galloprovincialis) from five European countries (France, Italy, Denmark, Spain and The Netherlands). A detailed analysis and comparison of methods indicated the need for further research to develop a standardised operating protocol for microplastic quantification and monitoring.

    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.