Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 4 / 4

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Mycobacterium
Check title to add to marked list
Application of transcriptomics to enhance early diagnostics of mycobacterial infections, with an emphasis on Mycobacterium avium ssp. paratuberculosis
Esker, Marielle H. van den; Koets, Ad P. - \ 2019
Veterinary Sciences 6 (2019)3. - ISSN 2306-7381
Biomarker - Diagnostics - Host-pathogen interactions - Johne's disease - Mycobacterium - Paratuberculosis - Transcriptomics

Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne's disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can takeplace,whilediagnostic tests areunable to reliablydetect aninfection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne's disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.

Effects of age and environment on adaptive immune responses to Mycobacterium avium subsp. paratuberculosis (MAP) vaccination in dairy goats in relation to paratuberculosis control strategies
Koets, Ad ; Ravesloot, Lars ; Ruuls, Robin ; Dinkla, Annemieke ; Eisenberg, Susanne ; Lievaart-Peterson, Karianne - \ 2019
Veterinary Sciences 6 (2019)3. - ISSN 2306-7381
Diagnostics - Immunity - Mycobacterium - Paratuberculosis - Vaccination

Paratuberculosis infection is caused by Mycobacterium avium subsp. paratuberculosis (MAP). In the Netherlands, 75% herd level prevalence of caprine paratuberculosis has been estimated, and vaccination is the principal control strategy applied. Most goat dairy farms with endemic paratuberculosis systematically vaccinate goat kids in the first months of life with a commercially available whole cell MAP vaccine. We hypothesized that the development of adaptive immune responses in goats vaccinated at young age depends on the environment they are raised in, and this has implications for the application of immune diagnostic tests in vaccinated dairy goats. We evaluated the early immune response to vaccination in young goat kids sourced from a MAP unsuspected non-vaccinated herd and raised in a MAP-free environment. Subsequently we compared these with responses observed in birth year and vaccination matched adult goats raised on farms with endemic paratuberculosis. Results indicated that initial adaptive immune responses to vaccination are limited in a MAP-free environment. In addition, adult antibody positive vaccinated goats raised in a MAP endemic environment are less likely to be IS900 PCR-positive as compared to antibody negative herd mates. We conclude that test-and-cull strategies in a vaccinated herd are currently not feasible using available immune diagnostic tests.

Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus
Ceniceros, Ana ; Dijkhuizen, Lubbert ; Petrusma, Mirjan ; Medema, M.H. - \ 2017
specialized metabolism - natural products - biosynthetic gene clusters - Rhodococcus - Mycobacterium
Background Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. Results Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more ‘primary’ role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. Conclusions The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.
Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus
Ceniceros, Ana ; Dijkhuizen, Lubbert ; Petrusma, Mirjan ; Medema, Marnix H. - \ 2017
BMC Genomics 18 (2017)1. - ISSN 1471-2164
Biosynthetic gene clusters - Mycobacterium - Natural products - Rhodococcus - Specialized metabolism
Background: Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. Results: Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. Conclusions: The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.