Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 3 / 3

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Prebiotic
Check title to add to marked list
The potential for pre-, pro- and synbiotics in the management of infants at risk of cow's milk allergy or with cow's milk allergy: An exploration of the rationale, available evidence and remaining questions
Fox, Adam ; Bird, J.A. ; Fiocchi, Alessandro ; Knol, Jan ; Meyer, Rosan ; Salminen, Seppo ; Sitang, Gong ; Szajewska, Hania ; Papadopoulos, Nikolaos - \ 2019
World Allergy Organization Journal 12 (2019)5. - ISSN 1939-4551
Allergy - Anaphylaxis - Bifidobacteria - Cow's milk allergy - Dysbiosis - IgE - Lactobacilli - Microbiota - Prebiotic - Probiotic - Synbiotic - World Allergy Organization

Cow's milk allergy is one of the most commonly reported childhood food allergies, with increasing incidence, persistence and severity in many countries across the world. The World Allergy Organization Special Committee on Food Allergy has identified cow's milk allergy as an area in need of a rationale-based approach in order to make progress against what it considered an onerous problem, with worldwide public health impact. There is growing interest in the potential role of the gut microbiota in the early programming and development of immune responses and allergy. This discussion paper considers the rationale and available evidence for modulation of the gut microbiota and for the use of synbiotics in the management of infants at risk of, or living with cow's milk allergy and summarizes remaining research questions that need to be answered for the development of evidence-based recommendations.

A specific synbiotic-containing amino acid-based formula in dietary management of cow's milk allergy : A randomized controlled trial
Fox, Adam T. ; Wopereis, Harm ; Ampting, Marleen T.J. van; Oude Nijhuis, Manon M. ; Butt, Assad M. ; Peroni, Diego G. ; Vandenplas, Yvan ; Candy, David C.A. ; Shah, Neil ; West, Christina E. ; Garssen, Johan ; Harthoorn, Lucien F. ; Knol, Jan ; Michaelis, Louise J. - \ 2019
Clinical and Translational Allergy 9 (2019)1. - ISSN 2045-7022
Bifidobacterium breve M-16V - Cow's milk allergy - Gut microbiota - Prebiotic - Probiotic - Symptoms

Background: Here we report follow-up data from a double-blind, randomized, controlled multicenter trial, which investigated fecal microbiota changes with a new amino acid-based formula (AAF) including synbiotics in infants with non-immunoglobulin E (IgE)-mediated cow's milk allergy (CMA). Methods: Subjects were randomized to receive test product (AAF including fructo-oligosaccharides and Bifidobacterium breve M-16V) or control product (AAF) for 8 weeks, after which infants could continue study product until 26 weeks. Fecal percentages of bifidobacteria and Eubacterium rectale/Clostridium coccoides group (ER/CC) were assessed at 0, 8, 12, and 26 weeks. Additional endpoints included stool markers of gut immune status, clinical symptoms, and safety assessments including adverse events and medication use. Results: The trial included 35 test subjects, 36 controls, and 51 in the healthy reference group. Study product was continued by 86% and 92% of test and control subjects between week 8-12, and by 71% and 80%, respectively until week 26. At week 26 median percentages of bifidobacteria were significantly higher in test than control [47.0% vs. 11.8% (p < 0.001)], whereas percentages of ER/CC were significantly lower [(13.7% vs. 23.6% (p = 0.003)]. Safety parameters were similar between groups. Interestingly use of dermatological medication and reported ear infections were lower in test versus control, p = 0.019 and 0.011, respectively. Baseline clinical symptoms and stool markers were mild (but persistent) and low, respectively. Symptoms reduced towards lowest score in both groups. Conclusion: Beneficial effects of this AAF including specific synbiotics on microbiota composition were observed over 26 weeks, and shown suitable for dietary management of infants with non-IgE-mediated CMA.

Exopolysaccharides produced by lactic acid bacteria : from health-promoting benefits to stress tolerance mechanisms
Caggianiello, Graziano ; Kleerebezem, Michiel ; Spano, Giuseppe - \ 2016
Applied Microbiology and Biotechnology 100 (2016)9. - ISSN 0175-7598 - p. 3877 - 3886.
Exopolysaccharides - Lactic acid bacteria - Prebiotic - Probiotic - Stress tolerance

A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and “ropy” products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.