Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Pteromalidae
Check title to add to marked list
Effects of temperature and food source on reproduction and longevity of aphid hyperparasitoids of the genera Dendrocerus and Asaphes
Boer, Jetske G. de; Salis, Lucia ; Tollenaar, Ward ; Heumen, Lisa J.M. van; Costaz, Thibault P.M. ; Harvey, Jeffrey A. ; Kos, Martine ; Vet, Louise E.M. - \ 2019
BioControl 64 (2019)3. - ISSN 1386-6141 - p. 277 - 290.
Aphidius colemani - Fourth trophic level - Hymenoptera - Megaspilidae - Myzus persicae - Pteromalidae

Hyperparasitoids of aphid parasitoids commonly occur in (sweet pepper) greenhouses, and can pose a threat to effective biological control of aphids. Here, we studied life history characteristics of laboratory colonies of Dendrocerus spp. Ratzeburg (Hymenoptera: Megaspilidae) and Asaphes spp. Walker (Pteromalidae) that originated from a commercial sweet pepper greenhouse. We aimed to clarify how these two hyperparasitoid taxa can coexist inside greenhouses. Hyperparasitoids of both taxa have a long lifespan that was extended significantly by food sources that are naturally available in a greenhouse environment, including aphid honeydew and sweet pepper flowers. Differences in sensitivity to decreased or increased temperatures did not appear to explain seasonal patterns in abundance of Dendrocerus spp. and Asaphes spp. in sweet pepper greenhouses. Instead, Dendrocerus spp. may have an advantage early in the season because it thrives on aphid honeydew, while Asaphes spp. may do better later in the season because of its long lifespan and extensive reproductive period.

The chemical basis of mate recognition in two parasitoid wasp species of the genus Nasonia
Mair, Magdalena M. ; Kmezic, Violeta ; Huber, Stephanie ; Pannebakker, Bart A. ; Ruther, Joachim - \ 2017
Entomologia Experimentalis et Applicata 164 (2017)1. - ISSN 0013-8703 - p. 1 - 15.
chemical communication - cuticular hydrocarbons - Hymenoptera - parasitic wasp - pheromone - Pteromalidae - reproductive isolation - species discrimination
To recognize one's mate is essential for all sexually reproducing animals. In insects, mate recognition is often based on chemical cues such as hydrocarbons which are distributed over the insect's cuticle. In the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae), interspecific mating possibly occurs in microsympatry between Nasonia vitripennis Walker and Nasonia giraulti Darling despite post-zygotic isolation mechanisms preventing hybridization. Males of N. vitripennis are known to equally court con- and heterospecific females, which they recognize by means of cuticular hydrocarbons. A recent study surprisingly showed that this might not be the case in N. giraulti, leaving open how males of this species achieve the recognition of mating partners. In this study, we investigated chemical mate recognition in N. giraulti in more detail and compared observed behaviors with behaviors of N. vitripennis by conducting experiments with both species concurrently and under the same experimental conditions. We disentangled the role of female-derived non-polar cuticular lipids – i.e., cuticular hydrocarbons – and more polar cuticular lipids in the ability of males to recognize con- and heterospecific females. In addition, we tested whether females of the two species discriminate similarly between con- and heterospecific males. We demonstrate that, in contrast to N. vitripennis, males of N. giraulti prefer live conspecific females over heterospecific ones. Furthermore, in contrast to N. vitripennis, mate recognition in N. giraulti males is not based on cuticular hydrocarbons, but rather involves other chemical messengers, presumably more polar cuticular lipids. In both species, discrimination against heterospecific males decreases with female age.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.