Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity
    Steinert, Georg ; Taylor, Michael W. ; Deines, Peter ; Simister, Rachel L. ; Voogd, Nicole J. De; Hoggard, Michael ; Schupp, Peter J. - \ 2016
    PeerJ 2016 (2016)4. - ISSN 2167-8359
    16S rRNA - Environmental variability - Microbial diversity - Porifera - Pyrosequencing - Symbiosis

    Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or lowmicrobial- abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.

    Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes
    Cleary, D.F.R. ; Becking, L.E. ; Polonia, A. ; Freitas, B.M. ; Gomes, N. - \ 2016
    FEMS microbiology ecology 92 (2016). - ISSN 0168-6496 - 14 p.
    anchialine - bacterioplankton - Mastigias - Pyrosequencing - Tripedalia
    In the present study, we compared communities of bacteria in two jellyfish species (the ‘golden’ jellyfish Mastigias cf. papua and the box jellyfish Tripedalia cf. cystophora) and water in three marine lakes located in the Berau region of northeastern Borneo, Indonesia. Jellyfish-associated bacterial communities were compositionally distinct and less diverse than bacterioplankton communities. Alphaproteobacteria, Gammaproteobacteria, Synechococcophycidae and Flavobacteriia were the most abundant classes in water. Jellyfish-associated bacterial communities were dominated by OTUs assigned to the Gammaproteobacteria (family Endozoicimonaceae), Mollicutes, Spirochaetes and Alphaproteobacteria (orders Kiloniellales and Rhodobacterales). Mollicutes were mainly restricted to Mastigias whereas Spirochaetes and the order Kiloniellales were most abundant in Tripedalia hosts. The most abundant OTU overall in jellyfish hosts was assigned to the family Endozoicimonaceae and was highly similar to organisms in Genbank obtained from various hosts including an octocoral, bivalve and fish species. Other abundant OTUs included an OTU assigned to the order Entomoplasmatales and mainly found in Mastigias hosts and OTUs assigned to the Spirochaetes and order Kiloniellales and mainly found in Tripedalia hosts. The low sequence similarity of the Entomoplasmatales OTU to sequences in Genbank suggests that it may be a novel lineage inhabiting Mastigias and possibly restricted to marine lakes
    Influence of salinity on fungal communities in a submerged fixed bed bioreactor for wastewater treatment
    Cortés-Lorenzo, C. ; González-Martínez, A. ; Smidt, H. ; González-López, J. ; Rodelas, B. - \ 2016
    Chemical Engineering Journal 285 (2016). - ISSN 1385-8947 - p. 562 - 572.
    Fungal communities - Pyrosequencing - Saline wastewater - Submerged fixed bed bioreactor - Wastewater treatment

    Salinity is known to influence the performance of biological wastewater treatment plants. While its impact on bacterial communities has been thoroughly studied, its influence on fungal communities has been largely overlooked. To address this knowledge gap, we assessed the effect of saline influents (0, 3.7, 24.1 and 44.1. g. NaCl/L) on the community structure and diversity of fungi in a submerged fixed bed bioreactor (SFBBR). For this purpose, denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing of PCR-amplified fungal 18S rRNA gene fragments and ITS regions, respectively, were used. Significant differences in the fungal community structure were found in relation to the NaCl concentration. Fungal diversity increased as salinity increased to a concentration up to 24.1. g. NaCl/L, but was significantly reduced at 44.1. g. NaCl/L. Basidiomycota dominated the fungal community in the absence of NaCl but decreased in relative abundance with increasing salinity, being replaced progressively by Ascomycota.

    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.