Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    The complex interactions between flowering behavior and fiber quality in hemp
    Salentijn, Elma M.J. ; Petit, Jordi ; Trindade, Luisa M. - \ 2019
    Frontiers in Plant Science 10 (2019). - ISSN 1664-462X
    Cannabis sativa - Fiber development - Flowering-time - Hemp - Phenology - Sex determination - Short-day plant

    Hemp, Cannabis sativa L., is a sustainable multipurpose fiber crop with high nutrient and water use efficiency and with biomass of excellent quality for textile fibers and construction materials. The yield and quality of hemp biomass are largely determined by the genetic background of the hemp cultivar but are also strongly affected by environmental factors, such as temperature and photoperiod. Hemp is a facultative short-day plant, characterized by a strong adaptation to photoperiod and a great influence of environmental factors on important agronomic traits such as “flowering-time” and “sex determination.” This sensitivity of hemp can cause a considerable degree of heterogeneity, leading to unforeseen yield reductions. Fiber quality for instance is influenced by the developmental stage of hemp at harvest. Also, male and female plants differ in stature and produce fibers with different properties and quality. Next to these causes, there is evidence for specific genotypic variation in fiber quality among hemp accessions. Before improved hemp cultivars can be developed, with specific flowering-times and fiber qualities, and adapted to different geographical regions, a better understanding of the molecular mechanisms controlling important phenological traits such as “flowering-time” and “sex determination” in relation to fiber quality in hemp is required. It is well known that genetic factors play a major role in the outcome of both phenological traits, but the major molecular factors involved in this mechanism are not characterized in hemp. Genome sequences and transcriptome data are available but their analysis mainly focused on the cannabinoid pathway for medical purposes. Herein, we review the current knowledge of phenotypic and genetic data available for “flowering-time,” “sex determination,” and “fiber quality” in short-day and dioecious crops, respectively, and compare them with the situation in hemp. A picture emerges for several controlling key genes, for which natural genetic variation may lead to desired flowering behavior, including examples of pleiotropic effects on yield quality and on carbon partitioning. Finally, we discuss the prospects for using this knowledge for the molecular breeding of this sustainable crop via a candidate gene approach.

    Maternal provision of non-sex-specific transformer messenger RNA in sex determination of the wasp Asobara tabida
    Geuverink, Elzemiek ; Verhulst, E.C. ; Leussen, M. van; Zande, L. ; Beukeboom, Leo W. - \ 2018
    Insect Molecular Biology 27 (2018)1. - ISSN 0962-1075 - p. 99 - 109.
    Doublesex - Hymenoptera - Maternal provision - Sex determination - Transformer - Transformer-2
    In many insect species maternal provision of sex-specifically spliced messenger RNA (mRNA) of sex determination genes is an essential component of the sex determination mechanism. In haplodiploid Hymenoptera, maternal provision in combination with genomic imprinting has been shown for the parasitoid Nasonia vitripennis, known as maternal effect genomic imprinting sex determination (MEGISD). Here, we characterize the sex determination cascade of Asobara tabida, another hymenopteran parasitoid. We show the presence of the conserved sex determination genes doublesex (dsx), transformer (tra) and transformer-2 (tra2) orthologues in As. tabida. Of these, At-dsx and At-tra are sex-specifically spliced, indicating a conserved function in sex determination. At-tra and At-tra2 mRNA is maternally provided to embryos but, in contrast to most studied insects, As. tabida females transmit a non-sex-specific splice form of At-tra mRNA to the eggs. In this respect, As. tabida sex determination differs from the MEGISD mechanism. How the paternal genome can induce female development in the absence of maternal provision of sex-specifically spliced mRNA remains an open question. Our study reports a hitherto unknown variant of maternal effect sex determination and accentuates the diversity of insect sex determination mechanisms.
    Maternal provision of transformer-2 is required for female development and embryo viability in the wasp Nasonia vitripennis
    Geuverink, Elzemiek ; Rensink, Anna H. ; Rondeel, Inge ; Beukeboom, Leo W. ; Zande, Louis van de; Verhulst, Eveline C. - \ 2017
    Insect Biochemistry and Molecular Biology 90 (2017). - ISSN 0965-1748 - p. 23 - 33.
    Diploid males - Nasonia vitripennis - RNA interference - Sex determination - Transformer - Transformer-2

    In insect sex determination a primary signal starts the genetic sex determination cascade that, in most insect orders, is subsequently transduced down the cascade by a transformer (tra) ortholog. Only a female-specifically spliced tra mRNA yields a functional TRA-protein that forms a complex with TRA2, encoded by a transformer-2 (tra2) ortholog, to act as a sex specific splicing regulator of the downstream transcription factors doublesex (dsx) and fruitless (fru). Here, we identify the tra2 ortholog of the haplodiploid parasitoid wasp N. vitripennis (Nv-tra2) and confirm its function in N. vitripennis sex determination. Knock down of Nv-tra2 by parental RNA interference (pRNAi) results in complete sex reversal of diploid offspring from female to male, indicating the requirement of Nv-tra2 for female sex determination. As Nv-tra2 pRNAi leads to frequent lethality in early developmental stages, maternal provision of Nv-tra2 transcripts is apparently also required for another, non-sex determining function during embryogenesis. In addition, lethality following Nv-tra2 pRNAi appears more pronounced in diploid than in haploid offspring. This diploid lethal effect was also observed following Nv-tra pRNAi, which served as a positive control in our experiments. As diploid embryos from fertilized eggs have a paternal chromosome set in addition to the maternal one, this suggests that either the presence of this paternal chromosome set or the dosage effect resulting from the diploid state is incompatible with the induced male development in N. vitripennis caused by either Nv-tra2 or Nv-tra pRNAi. The role of Nv-tra2 in activating the female sex determination pathway yields more insight into the sex determination mechanism of Nasonia.

    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.