Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    • help
    • print

      Print search results

    • export

      Export search results

    • alert
      We will mail you new results for this query: keywords==Suckling rats
    Check title to add to marked list
    Strain-specific probiotic properties of bifidobacteria and lactobacilli for the prevention of diarrhea caused by rotavirus in a preclinical model
    Azagra-Boronat, Ignasi ; Massot-Cladera, Malén ; Knipping, Karen ; Garssen, Johan ; Amor, Kaouther Ben; Knol, Jan ; Franch, Àngels ; Castell, Margarida ; Rodríguez-Lagunas, María J. ; Pérez-Cano, Francisco J. - \ 2020
    Nutrients 12 (2020)2. - ISSN 2072-6643
    Diarrhea - Probiotic - Rotavirus - Suckling rats

    Probiotic supplementation with different lactobacilli and bifidobacterial strains has demonstrated beneficial effects in infectious diarrhea caused by rotavirus (RV) in young children. Preclinical models of RV infection might be a good strategy to screen for the efficacy of new probiotic strains or to test their comparative efficacy. Neonatal Lewis rats were supplemented with Bifidobacterium breve M-16V, Lactobacillus acidophilus NCFM, Lactobacillus helveticus R0052, or Lactobacillus salivarius PS2 from days 2–14 of life. On day five, animals received RV SA-11 orally. Fecal samples were collected daily, weighed, and scored for the calculation of severity and incidence of diarrhea. In addition, fecal pH and fecal viral shedding were measured. Animals were sacrificed at the end of the study and their blood was obtained for the quantification of RV-specific immunoglobulins. RV infection was induced in ~90% of the animals. All probiotics caused a reduction of several clinical variables of severity and incidence of diarrhea, except L. salivarius PS2. L. acidophilus NCFM, B. breve M-16V, and L. helveticus R0052 seemed to be very effective probiotic strains. In addition, all Lactobacillus strains reduced the viral elimination one day post-inoculation. No differences were detected in the specific anti-RV humoral response. The present study highlights the strain-specific effects of probiotics and identifies promising probiotics for use in ameliorating and preventing RV-induced diarrhea in children, for example by including them in infant formulas.

    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.