Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 7 / 7

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Vector competence
Check title to add to marked list
Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus
Gennip, René G.P. van; Drolet, Barbara S. ; Rozo Lopez, Paula ; Roost, Ashley J.C. ; Boonstra, Jan ; Rijn, Piet A. van - \ 2019
Parasites & Vectors 12 (2019). - ISSN 1756-3305
Arbovirus - Bluetongue virus - Culicoides - Feeding model - Midge - Vector competence - Virus propagation

BACKGROUND: Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS: Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS: A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION: Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.

Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens
Koenraadt, Constantianus J.M. ; Möhlmann, Tim W.R. ; Verhulst, Niels O. ; Spitzen, Jeroen ; Vogels, Chantal B.F. - \ 2019
Parasites & Vectors 12 (2019)1. - ISSN 1756-3305
Diapause - Longevity - Mosquito - Overwintering - Survival - Vector competence - West Nile virus

Background: West Nile virus (WNV) is a mosquito-borne virus that is mainly transmitted among birds by Culex pipiens mosquitoes. The species Cx. pipiens consists of two biotypes named pipiens and molestus, which together can form hybrids. One of the major distinctions between the biotypes is their overwintering behaviour. Adults of biotype pipiens diapause during winter, whereas biotype molestus remains actively blood-feeding. Diapausing may affect survival and vector competence of biotype pipiens. The aims of this study were therefore to identify the biotype composition of diapausing Cx. pipiens mosquitoes, to quantify survival throughout the autumn and winter months, and to determine effects of overwintering on vector competence of emerging Cx. pipiens mosquitoes for WNV. Methods: Diapausing mosquitoes were collected at two typical overwintering locations in the Netherlands. A selection of Cx. pipiens mosquitoes was identified to biotype using real-time PCR. Survival of diapausing Cx. pipiens mosquitoes during autumn and winter was monitored by placing cages with either field-collected or laboratory-reared females in houses and sheds. Vector competence of field-collected (diapausing) and laboratory-reared (non-diapausing) Cx. pipiens mosquitoes was determined to gain insight in the effect of overwintering on WNV transmission. Results: The majority (92%) of diapausing Cx. pipiens females were identified as biotype pipiens. More than 70% of diapausing Cx. pipiens mosquitoes was able to survive for more than four months in sheds, whereas diapausing in houses resulted in 100% mortality in that same period. In contrast, non-diapausing Cx. pipiens biotype pipiens mosquitoes reared in the laboratory died within a week in both houses and sheds. Vector competence of Cx. pipiens mosquitoes that had diapaused during the autumn and winter months was comparable to non-diapausing laboratory-reared mosquitoes. Conclusions: This study confirms that the majority of Cx. pipiens mosquitoes in their typical overwintering site belongs to the pipiens biotype. It shows that more than two-third of diapausing Cx. pipiens mosquitoes is able to survive winter under sheltered winter conditions. Finally, vector competence for WNV of mosquitoes that emerge from overwintering sites is not affected by their relatively old age.

Enhancing vector refractoriness to trypanosome infection : achievements, challenges and perspectives
Kariithi, Henry M. ; Meki, Irene K. ; Schneider, Daniela I. ; Vooght, Linda De; Khamis, Fathiya M. ; Geiger, Anne ; Demirbaş-Uzel, Guler ; Vlak, Just M. ; iNCE, Ikbal Agah ; Kelm, Sorge ; Njiokou, Flobert ; Wamwiri, Florence N. ; Malele, Imna I. ; Weiss, Brian L. ; Abd-Alla, Adly M.M. - \ 2018
BMC Microbiology 18 (2018). - ISSN 1471-2180
Glossina - Hytrosaviridae - Microbiota - Paratransgenesis - Trypanosoma-refractoriness, sterile insect technique - Vector competence

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.

Vector competence of European mosquitoes for west Nile virus
Vogels, Chantal B.F. ; Göertz, Giel P. ; Pijlman, Gorben P. ; Koenraadt, Constantianus J.M. - \ 2017
Emerging Microbes and Infections 6 (2017)11. - ISSN 2222-1751
Europe - Innate immune responses - Midgut barrier - Mosquito - Salivary gland barrier - Surveillance - Vector competence - West nile virus
West Nile virus (WNV) is an arthropod-borne flavivirus of high medical and veterinary importance. The main vectors for WNV are mosquito species of the Culex genus that transmit WNV among birds, and occasionally to humans and horses, which are 'deadend' hosts. Recently, several studies have been published that aimed to identify the mosquito species that serve as vectors for WNV in Europe. These studies provide insight in factors that can influence vector competence of European mosquito species for WNV. Here, we review the current knowledge on vector competence of European mosquitoes for WNV, and the molecular knowledge on physical barriers, anti-viral pathways and microbes that influence vector competence based on studies with other flaviviruses. By comparing the 12 available WNV vector competence studies with European mosquitoes we evaluate the effect of factors such as temperature, mosquito origin and mosquito biotype on vector competence. In addition, we propose a standardised methodology to allow for comparative studies across Europe. Finally, we identify knowledge gaps regarding vector competence that, once addressed, will provide important insights into WNV transmission and ultimately contribute to effective strategies to control WNV.
Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature
Vogels, Chantal B.F. ; Fros, Jelke J. ; Goertz, Giel ; Pijlman, Gorben P. ; Koenraadt, Sander - \ 2016
Parasites & Vectors 9 (2016)1. - ISSN 1756-3305
Arbovirus - Culex - Infection - Temperature - Vector competence - West Nile virus

Background: Outbreaks of West Nile virus (WNV) have not occurred in northern Europe despite nearby circulation of WNV in the southern part of the continent. The main vector for WNV, the mosquito Culex (Cx.) pipiens, consists of two behaviorally distinct biotypes, pipiens and molestus, which can form hybrids. Although temperature has been shown to influence vector competence of Cx. pipiens for WNV and biotypes are differentially susceptible towards infection, the interaction between the two has not been elucidated. Methods: We determined vector competence of the Cx. pipiens biotypes and hybrids, after 14 days of incubation at 18, 23 and 28 °C. Mosquitoes were orally infected by providing an infectious blood meal or by injecting WNV directly in the thorax. Infection and transmission rates were determined by testing the bodies and saliva for WNV presence. In addition, titers of mosquitoes with WNV-positive bodies and saliva samples were determined. Results: Orally infected biotype pipiens and hybrids showed significantly increased transmission rates with higher temperatures, up to 32 and 14 %, respectively. In contrast, the molestus biotype had an overall transmission rate of 10 %, which did not increase with temperature. All mosquitoes that were infected via WNV injections had (close to) 100 % infection and transmission rates, suggesting an important role of the mosquito midgut barrier. We found no effect of increasing temperature on viral titers. Conclusions: Temperature differentially affected vector competence of the Cx. pipiens biotypes. This shows the importance of accounting for biotype-by-temperature interactions, which influence the outcomes of vector competence studies. Vector competence studies with Cx. pipiens mosquitoes differentiated to the biotype level are essential for proper WNV risk assessments.

A proteomics approach reveals molecular manipulators of distinct cellular processes in the salivary glands of Glossina m. morsitans in response to Trypanosoma b. brucei infections
Kariithi, Henry M. ; Boeren, Sjef ; Murungi, Edwin K. ; Vlak, Just M. ; Abd-Alla, Adly M.M. - \ 2016
Parasites & Vectors 9 (2016)1. - ISSN 1756-3305
LC-MS/MS - Metacyclic trypomastigotes - Metacyclogenesis - Protein-protein interaction - Trypanosome refractoriness - Vector competence

Background: Glossina m. morsitans is the primary vector of the Trypanosoma brucei group, one of the causative agents of African trypanosomoses. The parasites undergo metacyclogenesis, i.e. transformation into the mammalian-infective metacyclic trypomastigote (MT) parasites, in the salivary glands (SGs) of the tsetse vector. Since the MT-parasites are largely uncultivable in vitro, information on the molecular processes that facilitate metacyclogenesis is scanty. Methods: To bridge this knowledge gap, we employed tandem mass spectrometry to investigate protein expression modulations in parasitized (T. b. brucei-infected) and unparasitized SGs of G. m. morsitans. We annotated the identified proteins into gene ontologies and mapped the up- and downregulated proteins within protein-protein interaction (PPI) networks. Results: We identified 361 host proteins, of which 76.6 % (n = 276) and 22.3 % (n = 81) were up- and downregulated, respectively, in parasitized SGs compared to unparasitized SGs. Whilst 32 proteins were significantly upregulated (> 10-fold), only salivary secreted adenosine was significantly downregulated. Amongst the significantly upregulated proteins, there were proteins associated with blood feeding, immunity, cellular proliferation, homeostasis, cytoskeletal traffic and regulation of protein turnover. The significantly upregulated proteins formed major hubs in the PPI network including key regulators of the Ras/MAPK and Ca2+/cAMP signaling pathways, ubiquitin-proteasome system and mitochondrial respiratory chain. Moreover, we identified 158 trypanosome-specific proteins, notable of which were proteins in the families of the GPI-anchored surface glycoproteins, kinetoplastid calpains, peroxiredoxins, retrotransposon host spot multigene and molecular chaperones. Whilst immune-related trypanosome proteins were over-represented, membrane transporters and proteins involved in translation repression (e.g. ribosomal proteins) were under-represented, potentially reminiscent of the growth-arrested MT-parasites. Conclusions: Our data implicate the significantly upregulated proteins as manipulators of diverse cellular processes in response to T. b. brucei infection, potentially to prepare the MT-parasites for invasion and evasion of the mammalian host immune defences. We discuss potential strategies to exploit our findings in enhancement of trypanosome refractoriness or reduce the vector competence of the tsetse vector.

Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus
Fros, J.J. ; Geertsema, Corinne ; Zouache, Karima ; Baggen, Jim ; Domeradzka, Natalia ; Leeuwen, D.M. Van; Flipse, Jacky ; Vlak, J.M. ; Failloux, Anna Bella ; Pijlman, G.P. - \ 2015
Parasites & Vectors 8 (2015)1. - ISSN 1756-3305 - 15 p.
Aedes albopictus - Chikungunya virus - G3BP - nsP3 - Rasputin - Vector competence

Background: Chikungunya virus (CHIKV) is an arthritogenic alphavirus (family Togaviridae), transmitted by Aedes species mosquitoes. CHIKV re-emerged in 2004 with multiple outbreaks worldwide and recently reached the Americas where it has infected over a million individuals in a rapidly expanding epidemic. While alphavirus replication is well understood in general, the specific function (s) of non-structural protein nsP3 remain elusive. CHIKV nsP3 modulates the mammalian stress response by preventing stress granule formation through sequestration of G3BP. In mosquitoes, nsP3 is a determinant of vector specificity, but its functional interaction with mosquito proteins is unclear. Methods: In this research we studied the domains required for localization of CHIKV nsP3 in insect cells and demonstrated its molecular interaction with Rasputin (Rin), the mosquito homologue of G3BP. The biological involvement of Rin in CHIKV infection was investigated in live Ae. albopictus mosquitoes. Results: In insect cells, nsP3 localized as cytoplasmic granules, which was dependent on the central domain and the C-terminal variable region but independent of the N-terminal macrodomain. Ae. albopictus Rin displayed a diffuse, cytoplasmic localization, but was effectively sequestered into nsP3-granules upon nsP3 co-expression. Site-directed mutagenesis showed that the Rin-nsP3 interaction involved the NTF2-like domain of Rin and two conserved TFGD repeats in the C-terminal variable domain of nsP3. Although in vitro silencing of Rin did not impact nsP3 localization or CHIKV replication in cell culture, Rin depletion in vivo significantly decreased the CHIKV infection rate and transmissibility in Ae.albopictus. Conclusions: We identified the nsP3 hypervariable C-terminal domain as a critical factor for granular localization and sequestration of mosquito Rin. Our study offers novel insight into a conserved virus-mosquito interaction at the molecular level, and reveals a strong proviral role for G3BP homologue Rin in live mosquitoes, making the nsP3-Rin interaction a putative target to interfere with the CHIKV transmission cycle.

Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.