Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 5 / 5

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status : The NU-AGE 1-year dietary intervention across five European countries
    Ghosh, Tarini Shankar ; Rampelli, Simone ; Jeffery, Ian B. ; Santoro, Aurelia ; Neto, Marta ; Capri, Miriam ; Giampieri, Enrico ; Jennings, Amy ; Candela, Marco ; Turroni, Silvia ; Zoetendal, Erwin G. ; Hermes, Gerben D.A. ; Elodie, Caumon ; Brugere, Corinne Malpuech ; Pujos-Guillot, Estelle ; Berendsen, Agnes M. ; Groot, Lisette C.P.G.M. De; Feskens, Edith J.M. ; Kaluza, Joanna ; Pietruszka, Barbara ; Bielak, Marta Jeruszka ; Comte, Blandine ; Maijo-Ferre, Monica ; Nicoletti, Claudio ; Vos, Willem M. de; Fairweather-Tait, Susan ; Cassidy, Aedin ; Brigidi, Patrizia ; Franceschi, Claudio ; O'Toole, Paul W. - \ 2020
    Gut 69 (2020)7. - ISSN 0017-5749
    ageing - diet - enteric bacterial microflora - inflammation - intestinal bacteria

    Objective: Ageing is accompanied by deterioration of multiple bodily functions and inflammation, which collectively contribute to frailty. We and others have shown that frailty co-varies with alterations in the gut microbiota in a manner accelerated by consumption of a restricted diversity diet. The Mediterranean diet (MedDiet) is associated with health. In the NU-AGE project, we investigated if a 1-year MedDiet intervention could alter the gut microbiota and reduce frailty. Design: We profiled the gut microbiota in 612 non-frail or pre-frail subjects across five European countries (UK, France, Netherlands, Italy and Poland) before and after the administration of a 12-month long MedDiet intervention tailored to elderly subjects (NU-AGE diet). Results: Adherence to the diet was associated with specific microbiome alterations. Taxa enriched by adherence to the diet were positively associated with several markers of lower frailty and improved cognitive function, and negatively associated with inflammatory markers including C-reactive protein and interleukin-17. Analysis of the inferred microbial metabolite profiles indicated that the diet-modulated microbiome change was associated with an increase in short/branch chained fatty acid production and lower production of secondary bile acids, p-cresols, ethanol and carbon dioxide. Microbiome ecosystem network analysis showed that the bacterial taxa that responded positively to the MedDiet intervention occupy keystone interaction positions, whereas frailty-associated taxa are peripheral in the networks. Conclusion: Collectively, our findings support the feasibility of improving the habitual diet to modulate the gut microbiota which in turn has the potential to promote healthier ageing.

    Adaptation to developmental diet influences the response to selection on age at reproduction in the fruit fly
    May, Christina M. ; Heuvel, Joost van den; Doroszuk, Agnieszka ; Hoedjes, Katja M. ; Flatt, Thomas ; Zwaan, Bas J. - \ 2019
    Journal of Evolutionary Biology 32 (2019)5. - ISSN 1010-061X - p. 425 - 437.
    ageing - experimental evolution - life-history evolution - phenotypic plasticity

    Experimental evolution (EE) is a powerful tool for addressing how environmental factors influence life-history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here, we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets; however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age-at-reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade-offs should be considered not only among traits within an organism, but also among adaptive responses to different—sometimes conflicting—selection pressures, including across life stages.

    Age-dependent changes in GI physiology and microbiota : Time to reconsider?
    An, Ran ; Wilms, Ellen ; Masclee, Ad A.M. ; Smidt, Hauke ; Zoetendal, Erwin G. ; Jonkers, Daisy - \ 2018
    Gut 67 (2018)12. - ISSN 0017-5749 - p. 2213 - 2222.
    ageing - gastrointestinal physiology - intestinal bacteria

    Our life expectancy is increasing, leading to a rise in the ageing population. Ageing is associated with a decline in physiological function and adaptive capacity. Altered GI physiology can affect the amount and types of nutrients digested and absorbed as well as impact the intestinal microbiota. The intestinal microbiota is considered a key player in our health, and a variety of studies have reported that microbiota composition is changing during ageing. Since ageing is associated with a decline in GI function and adaptive capacity, it is crucial to obtain insights into this decline and how this is related to the intestinal microbiota in the elderly. Hence, in this review we focus on age-related changes in GI physiology and function, changes of the intestinal microbiota with ageing and frailty, how these are associated and how intestinal microbiota-targeted interventions may counteract these changes.

    In ovo testosterone treatment reduces long-term survival of female pigeons : a preliminary analysis after nine years of monitoring
    Matson, K.D. ; Riedstra, B. ; Tieleman, B.I. - \ 2016
    Journal of Animal Physiology and Animal Nutrition 100 (2016)6. - ISSN 0931-2439 - p. 1031 - 1036.
    ageing - bird - egg - hormone - maternal effect - mortality

    Early exposure to steroid hormones, as in the case of an avian embryo exposed yolk testosterone, can impact the biology of an individual in different ways over the course of its life. While many early-life effects of yolk testosterone have been documented, later-life effects remain poorly studied. We followed a cohort of twenty captive pigeons hatched in 2005. Half of these birds came from eggs with experimentally increased concentrations of testosterone; half came from control eggs. Preliminary results suggest non-random mortality during the birds’ first nine years of life. Hitherto, all males have survived, and control females have survived better than testosterone-treated ones. Despite inherent challenges, studies of later-life consequences of early-life exposure in longer-lived species can offer new perspectives that are precluded by studies of immediate outcomes or shorter-lived species.

    Data from: The plastic fly: the effect of sustained fluctuations in adult food supply on life history traits
    Heuvel, Joost van den; Zandveld, Jelle ; Mulder, M. ; Brakefield, P.M. ; Kirkwood, T.B.L. ; Shanley, D.P. ; Zwaan, Bas - \ 2014
    Wageningen University & Research
    ageing - resource allocation - lifespan - life history - phenotypic plasticity - weight - diet - drosophila melanogaster - reproduction
    Many adult traits in Drosophila melanogaster show phenotypic plasticity, and the effects of diet on traits such as lifespan and reproduction are well explored. Although plasticity in response to food is still present in older flies, it is unknown how sustained environmental variation affects life-history traits. Here, we explore how such life-long fluctuations of food supply affect weight and survival in groups of flies and affect weight, survival and reproduction in individual flies. In both experiments, we kept adults on constant high or low food and compared these to flies that experienced fluctuations of food either once or twice a week. For these ‘yoyo’ groups, the initial food level and the duration of the dietary variation differed during adulthood, creating four ‘yoyo’ fly groups. In groups of flies, survival and weight were affected by adult food. However, for individuals, survival and reproduction, but not weight, were affected by adult food, indicating that single and group housing of female flies affects life-history trajectories. Remarkably, both the manner and extent to which life-history traits varied in relation to food depended on whether flies initially experienced high or low food after eclosion. We therefore conclude that the expression of life-history traits in adult life is affected not only by adult plasticity, but also by early adult life experiences. This is an important but often overlooked factor in studies of life-history evolution and may explain variation in life-history experiments.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.