Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops
    Melander, B. ; Munier-Jolain, N.M. ; Charles, R. ; Wirth, J. ; Schwarz, J. ; Weide, R.Y. van der; Bonin, L. ; Jensen, P.K. ; Kudsk, P.K. - \ 2013
    Weed Technology 27 (2013)1. - ISSN 0890-037X - p. 231 - 240.
    thistle cirsium-arvense - population-dynamics - oilseed rape - no-till - alopecurus-myosuroides - herbicide performance - conservation tillage - cropping systems - stubble tillage - spring barley
    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduced-tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programs based on integrated pest management (IPM) principles. Conventional noninversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption is mostly higher compared to plow-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in noninversion tillage systems, and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies, and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems, but their impact in noninversion tillage systems needs validation. Direct mechanical weed control methods based on rotating weeding devices such as rotary hoes could become useful in reduced-tillage systems where more crop residues and less workable soils are more prevalent, but further development is needed for effective application. Owing to the frequent use of glyphosate in reduced-tillage systems, perennial weeds are not particularly problematic. However, results from organic cropping systems clearly reveal that desisting from glyphosate use inevitably leads to more problems with perennials, which need to be addressed in future research.
    Field weed population dynamics : a review of model approaches and applications
    Holst, N. ; Rasmussen, I.A. ; Bastiaans, L. - \ 2007
    Weed Research 47 (2007)1. - ISSN 0043-1737 - p. 1 - 14.
    species hypericum-perforatum - tolerant rapeseed crops - ryegrass lolium-rigidum - long-term evolution - soybean glycine-max - seed bank dynamics - corn zea-mays - bioeconomic model - alopecurus-myosuroides - integrated management
    Mathematical modelling is a commonly used tool for studying the long-term dynamics of weed populations in agriculture. This was reflected in our review by the large number of scientific papers (134 original publications) and the continuing need to gain an overview over this fast developing field (20 previous review papers were found). In this article, we provide a more comprehensive review than earlier seen, striving to include all relevant publications. Thus, we cover models of the population dynamics of 60 weed species in 40 crops. An online, accompanying database provides an indexed bibliography. Despite the large variation in crops, weeds and geography, the models were surprisingly similar in their approach: structured around the weed life cycle, excluding environmental factors and giving little attention to validation or even documentation of model construction. In addition, their application was similar, limited mostly to strategic decision making. We hope that the overview provided by this review will inspire weed modellers and that it will serve as a basis for discussion and as a frame of reference when we proceed to advance the modelling of weed populations to a new level, developing new approaches and tackling new application domains
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.