Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Molecular assessment of muscle health and function : The effect of age, nutrition and physical activity on the human muscle transcriptome and metabolom
    Hangelbroek, Roland W.J. - \ 2017
    Wageningen University. Promotor(en): A.H. Kersten; C.P.G.M. de Groot, co-promotor(en): M.V. Boekschoten. - Wageningen : Wageningen University - ISBN 9789463437103 - 205
    muscles - age - nutrition - physical activity - transcriptomes - metabolomes - elderly - creatine - phosphocreatine - vitamin d - atrophy - spieren - leeftijd - voeding - lichamelijke activiteit - transcriptomen - metabolomen - ouderen - creatine - fosfocreatine - vitamine d - atrofie

    Prolonged lifespan and decreased fertility will lead to an increased proportion of older adults in the world population (population aging). An important strategy to deal with population aging has been to promote healthy aging; not only to prevent mounting health care costs, but also to maintain independence and quality of life of older populations for as long as possible. Close to the opposite of the healthy aging is frailty. A major component of (physical) frailty is sarcopenia: age-related loss of muscle mass. Decreased muscle size and strength has been associated with a wide variety of negative health outcomes, including increased risk of hospitalization, physical disability and even death. Therefore, maintaining muscle size and strength is very important for healthy aging. Nutrition and physical activity are possible strategies to maintain or even improve muscle function with age.

    The effect of nutrition, age, frailty and physical activity on the function of skeletal muscle is complex. A better understanding of the molecular mechanisms involved can provide new insights in potential strategies to maintain muscle function over the life course. This thesis aims to investigate these mechanisms and processes that underlie the effects of age, frailty and physical activity by leveraging the sensitivity and comprehensiveness of transcriptomics and metabolomics.

    Chapter 2 and 3 describe the effects of age, frailty and resistance-type exercise training on the skeletal muscle transcriptome and metabolome. Both the transcriptome and metabolome show significant differences between frail and healthy older adults. These differences are similar to the differneces between healthy young men and healthy older adults, suggesting that frailty presents itself as a more pronounced form of aging, somewhat independent of chronological age. These age and frailty related differences in the transcriptome are partially reversed by resistance-type exercise training, in accordance with the observed improvement in muscle strength. Regression analysis revealed that the protocadherin gamma gene cluster may be important to skeletal muscle function. Protocadherin gamma is involved in axon guidance and may be upregulated due to the denervation-reinnervation cycles observed in skeletal muscle of older individuals. The metabolome suggested that resistance-type exercise training led to a decrease in branched-chain amino acid oxidation, as shown by a decrease in amino acid derived carnitines. Lastly, the blood metabolome showed little agreement with the metabolome in skeletal muscle, indicating that blood is a poor read-out of muscle metabolism.

    We assessed the effect of knee immobilization with creatine supplementation or placebo on the skeletal muscle transcriptome and metabolome in chapter 4. Knee immobilization caused muscle mass loss and strength loss in all participants, with no differences between creatine and placebo groups. Knee immobilization appeared to induce the HDAC4-myogenin axis, which is primarily associated with denervation and motor neuron diseases. The metabolome showed changes consistent with the decreased expression of energy metabolism genes. While acyl-carnitine levels tended to decrease with knee immobilization, one branched-chain amino acid-derived acyl carnitine was increased after knee immobilization, suggesting increased amino acid oxidation.

    Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function among older populations. In chapter 5, supplementation with vitamin D (calcifediol, 25(OH)D) is investigated as nutritional strategy to improve muscle function among frail older adults. However, we observed no effect of vitamin D on the muscle transcriptome. These findings indicate the effects of vitamin D supplementation on skeletal muscle may be either absent, weak, or limited to a small subset of muscle cells.

    Transcriptomic changes due to different forms of muscle disuse are compared in chapter 6 (primarily knee immobilization and bed rest). The goal was to determine the similarities and differences among various causes of muscle atrophy in humans (primarily muscle disuse). Both knee immobilization and bed rest led to significant changes in the muscle transcriptome. However, the overlap in significantly changed genes was relatively small. Knee immobilization was characterized by ubiquitin-mediated proteolysis and induction of the HDAC4/Myogenin axis, whereas bed rest revealed increased expression of genes of the immune system and increased expression of lysosomal genes. Knee immobilization showed the highest similarity with age and frailty-related transcriptomic changes. This finding suggests that knee immobilization may be the most suitable form of disuse atrophy to assess the effectiveness of strategies to prevent age-related muscle loss in humans.

    The transcriptome and metabolome are incredibly useful tools in describing the wide array of biological systems within skeletal muscle. These systems can be modulated using physical activity (or lack thereof) as well as nutrition. This thesis describes some of these processes and highlights several unexplored genes and metabolites that may be important for maintaining or even optimizing muscle function. In the future, it may be possible to optimize both exercise and nutrition for each individual using these techniques; or even better, cheaper and less invasive alternatives.

    Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling
    Dwarkasing, J.T. ; Boekschoten, M.V. ; Witkamp, R.F. ; Norren, K. van - \ 2015
    Journal of cachexia, sarcopenia and muscle 6 (2015)1. - ISSN 2190-5991 - p. 84 - 94.
    integrin-linked kinase - rat skeletal-muscle - oxidative stress - soleus muscle - ubiquitin-proteasome - myoblast differentiation - apoptotic pathways - connective-tissue - tibialis anterior - atrophy
    Background. Anorexia is a common symptom among cancer patients and contributes to malnutrition and strongly impinges on quality of life. Cancer-induced anorexia is thought to be caused by an inability of food intake-regulating systems in the hypothalamus to respond adequately to negative energy balance during tumour growth. Here, we show that this impaired response of food-intake control is likely to be mediated by altered serotonin signalling and by failure in post-transcriptional neuropeptide Y (NPY) regulation.MethodsTwo tumour cachectic mouse models with different food intake behaviours were used: a C26-colon adenocarcinoma model with increased food intake and a Lewis lung carcinoma model with decreased food intake. This contrast in food intake behaviour between tumour-bearing (TB) mice in response to growth of the two different tumours was used to distinguish between processes involved in cachexia and mechanisms that might be important in food intake regulation. The hypothalamus was used for transcriptomics (affymetrix chips).ResultsIn both models, hypothalamic expression of orexigenic NPY was significantly higher compared with controls, suggesting that this change does not directly reflect food intake status but might be linked to negative energy balance in cachexia. Expression of genes involved in serotonin signalling showed to be different between C26-TB mice and Lewis lung carcinoma-TB mice and was inversely associated with food intake. In vitro, using hypothalamic cell lines, serotonin repressed neuronal hypothalamic NPY secretion while not affecting messenger NPY expression, suggesting that serotonin signalling can interfere with NPY synthesis, transport, or secretion.ConclusionsAltered serotonin signalling is associated with changes in food intake behaviour in cachectic TB mice. Serotonins' inhibitory effect on food intake under cancer cachectic conditions is probably via affecting the NPY system. Therefore, serotonin regulation might be a therapeutic target to prevent the development of cancer-induced eating disorders.
    Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish
    Palstra, A.P. ; Rovira, M. ; Rizo-Roca, D. ; Torrella, J.R. ; Spaink, H.P. ; Planas, J.V. - \ 2014
    BMC Genomics 15 (2014). - ISSN 1471-2164 - 47 p.
    satellite cell - gene-expression - danio-rerio - muscular-dystrophies - molecular regulation - cluster-analysis - axial muscle - growth - mass - atrophy
    Background The adult skeletal muscle is a plastic tissue with a remarkable ability to adapt to different levels of activity by altering its excitability, its contractile and metabolic phenotype and its mass. We previously reported on the potential of adult zebrafish as a tractable experimental model for exercise physiology, established its optimal swimming speed and showed that swimming-induced contractile activity potentiated somatic growth. Given that the underlying exercise-induced transcriptional mechanisms regulating muscle mass in vertebrates are not fully understood, here we investigated the cellular and molecular adaptive mechanisms taking place in fast skeletal muscle of adult zebrafish in response to swimming. Results Fish were trained at low swimming speed (0.1 m/s; non-exercised) or at their optimal swimming speed (0.4 m/s; exercised). A significant increase in fibre cross-sectional area (1.290¿±¿88 vs. 1.665¿±¿106 µm2) and vascularization (298¿±¿23 vs. 458¿±¿38 capillaries/mm2) was found in exercised over non-exercised fish. Gene expression profiling by microarray analysis evidenced the activation of a series of complex transcriptional networks of extracellular and intracellular signaling molecules and pathways involved in the regulation of muscle mass (e.g. IGF-1/PI3K/mTOR, BMP, MSTN), myogenesis and satellite cell activation (e.g. PAX3, FGF, Notch, Wnt, MEF2, Hh, EphrinB2) and angiogenesis (e.g. VEGF, HIF, Notch, EphrinB2, KLF2), some of which had not been previously associated with exercise-induced contractile activity. Conclusions The results from the present study show that exercise-induced contractile activity in adult zebrafish promotes a coordinated adaptive response in fast muscle that leads to increased muscle mass by hypertrophy and increased vascularization by angiogenesis. We propose that these phenotypic adaptations are the result of extensive transcriptional changes induced by exercise. Analysis of the transcriptional networks that are activated in response to exercise in the adult zebrafish fast muscle resulted in the identification of key signaling pathways and factors for the regulation of skeletal muscle mass, myogenesis and angiogenesis that have been remarkably conserved during evolution from fish to mammals. These results further support the validity of the adult zebrafish as an exercise model to decipher the complex molecular and cellular mechanisms governing skeletal muscle mass and function in vertebrates.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.