Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Data from: Functional and evolutionary consequences of cranial fenestration in birds
    Gussekloo, S.W.S. ; Berthaume, Michael A. ; Pulaski, Daniel R. ; Westbroek, Irene ; Waarsing, Jan H. ; Heinen, R. ; Grosse, Ian R. ; Dumont, Elizabeth R. - \ 2017
    Wageningen University & Research
    avian evolution - cranial morphology - fenestration - finite element modelling - adaptive radiation
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modelling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group.
    Copy number variation in Fayoumi and Leghorn chickens analyzed using array comparative genomic hybridization
    Abernathy, J. ; Li, X. ; Jia, X. ; Chou, W. ; Lamont, S.J. ; Crooijmans, R.P.M.A. ; Zhou, H. - \ 2014
    Animal Genetics 45 (2014)3. - ISSN 0268-9146 - p. 400 - 411.
    major histocompatibility complex - large gene lists - expression profiles - avian evolution - snp beadchip - human health - v-atpases - ncbi geo - disease - lines
    Copy number variation refers to regions along chromosomes that harbor a type of structural variation, such as duplications or deletions. Copy number variants (CNVs) play a role in many important traits as well as in genetic diversity. Previous analyses of chickens using array comparative genomic hybridizations or single-nucleotide polymorphism chip assays have been performed on various breeds and genetic lines to discover CNVs. In this study, we assessed individuals from two highly inbred (inbreeding coefficiency > 99.99%) lines, Leghorn G-B2 and Fayoumi M15.2, to discover novel CNVs in chickens. These lines have been previously studied for disease resistance, and to our knowledge, this represents the first global assessment of CNVs in the Fayoumi breed. Genomic DNA from individuals was examined using the Agilent chicken 244 K comparative genomic hybridization array and quantitative PCR. We identified a total of 273 CNVs overall, with 112 CNVs being novel and not previously reported. Quantitative PCR using the standard curve method validated a subset of our array data. Through enrichment analysis of genes within CNV regions, we observed multiple chromosomes, terms and pathways that were significantly enriched, largely dealing with the major histocompatibility complex and immune responsiveness. Using an additional round of computational and statistical analysis with a different bioinformatic pipeline, we identified 43 CNVs among these as high-confidence regions, 14 of which were found to be novel. We further compared and contrasted individuals of the two inbred lines to discover regions that have a significant difference in copy number between lines. A total of 40 regions had significant deletions or duplications between the lines. Gene Ontology analysis of genomic regions containing CNVs between lines also was performed. This between-line candidate CNV list will be useful in studies with these two unique genetic lines, which may harbor variations that underlie quantitative trait loci for disease resistance and other important traits. Through the global discovery of novel CNVs in chicken, these data also provide resources for further genetic and functional genomics studies.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.