Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon
    Broadbent, E.N. ; Zambrano, A.M.A. ; Asner, G.P. ; Soriano, M. ; Field, C.B. ; Souza, H.R. de; Pena Claros, M. ; Adams, R.I. ; Dirzo, R. ; Giles, L. - \ 2014
    PLoS ONE 9 (2014)2. - ISSN 1932-6203 - 23 p.
    carbon-isotope discrimination - tropical rain-forests - n-15 natural-abundance - northeastern costa-rica - below-ground carbon - land-use change - n-p ratios - secondary forest - organic-matter - brazilian amazon
    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar d13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil d13C dynamics were largely constrained by plant species composition. Foliar d15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.
    Pan-European d13C values of air and organic matter from forest ecosystems
    Hemming, D. ; Yakir, D. ; Ambus, P. ; Aurela, M. ; Besson, C. ; Black, K. ; Buchmann, N. ; Burlett, R. ; Cescatti, A. ; Clement, R. ; Gross, P. ; Granier, A. ; Grünwald, T. ; Havrankova, K. ; Janous, D. ; Janssens, I.A. ; Knohl, A. ; Köstner, B. ; Kowalski, A. ; Laurila, T. ; Mata, C. ; Marcolla, B. ; Matteucci, G. ; Moncrieff, J. ; Moors, E.J. ; Osborne, B. ; Santos Pereira, J. ; Pihlatie, M. ; Pilegaard, K. ; Ponti, F. ; Rosova, Z. ; Rossi, F. ; Scartazza, A. ; Vesala, T. - \ 2005
    Global Change Biology 11 (2005)7. - ISSN 1354-1013 - p. 1065 - 1093.
    carbon-isotope discrimination - tree-ring cellulose - below-ground carbon - fossil-fuel co2 - atmospheric co2 - sampling-network - environmental-regulation - dioxide emissions - soil respiration - root respiration
    We present carbon stable isotope, delta C-13, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that delta C-13 values derived from large-scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem-scale delta C-13 values. In this framework, we also tested the potential of delta C-13 in canopy air and plant organic matter to record regional-scale ecophysiological patterns. Our network estimates for the mean delta C-13 of ecosystem respired CO2 and the related 'discrimination' of ecosystem respiration, delta(er) and Delta(er), respectively, were -25.6 +/- 1.9 parts per thousand and 17.8 +/- 2.0 parts per thousand in 2001 and -26.6 +/- 1.5 parts per thousand and 19.0 +/- 1.6 parts per thousand in 2002. The results were in close agreement with delta C-13 values derived from regional-scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional-scale atmospheric sampling programs generally capture ecosystem delta C-13 signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in delta(er). From west to east, across the network, there was a general enrichment in C-13 (similar to 3 parts per thousand and similar to 1 parts per thousand for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal C-13 enrichment between July and September, followed by depletion in November (from about -26.0 parts per thousand to -24.5 parts per thousand to -30.0 parts per thousand), was also observed. In 2001, July and August delta(er) values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (T-a), but not significantly with monthly average precipitation (P-m). In contrast, in 2002 (a much wetter peak season), delta(er) was significantly related with T-a, but not significantly with VPD and RH. The important role of plant physiological processes on delta(er) in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time-lag analyses of delta(er) vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of delta(er) and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the delta(er) signal during this season. Organic matter delta C-13 results showed progressive C-13 enrichment from leaves, through stems and roots to soil organic matter, which may be explained by C-13 fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. delta C-13 values of organic matter of any of the plant components did not well represent short-term delta(er) values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.