Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==breastfeeding
Check title to add to marked list
Correlating Infant Fecal Microbiota Composition and Human Milk Oligosaccharide Consumption by Microbiota of 1-Month-Old Breastfed Infants
Borewicz, Klaudyna ; Gu, Fangjie ; Saccenti, Edoardo ; Arts, I.C.W. ; Penders, John ; Thijs, Carel ; Leeuwen, Sander S. van; Lindner, Cordula ; Nauta, Arjen ; Leusen, Ellen van; Schols, Henk A. ; Smidt, Hauke - \ 2019
Molecular Nutrition & Food Research (2019). - ISSN 1613-4125
breastfeeding - human milk oligosaccharide - microbial clusters - microbiome

Scope: Understanding the biological functions of human milk oligosaccharides (HMOs) in shaping gastrointestinal (GI) tract microbiota during infancy is of great interest. A link between HMOs in maternal milk and infant fecal microbiota composition is examined and the role of microbiota in degrading HMOs within the GI tract of healthy, breastfed, 1-month-old infants is investigated. Methods and results: Maternal breast milk and infant feces are from the KOALA Birth Cohort. HMOs are quantified in milk and infant fecal samples using liquid chromatography-mass spectrometry. Fecal microbiota composition is characterized using Illumina HiSeq 16S rRNA gene amplicon sequencing. The composition is associated with gender, delivery mode, and milk HMOs: Lacto-N-fucopentaose I and 2′-fucosyllactose. Overall, Bifidobacterium, Bacteroides, Escherichia–Shigella, and Parabacteroides are predominating genera. Three different patterns in infant fecal microbiota structure are detected. GI degradation of HMOs is strongly associated with fecal microbiota composition, and there is a link between utilization of specific HMOs and relative abundance of various phylotypes (operational taxonomic units). Conclusions: HMOs in maternal milk are among the important factors shaping GI tract microbiota in 1-month-old breastfed infants. An infant's ability to metabolize different HMOs strongly correlates with fecal microbiota composition and specifically with phylotypes within genera Bifidobacterium, Bacteroides, and Lactobacillus.

Sensory characteristics of human milk : Association between mothers' diet and milk for bitter taste
Mastorakou, Dimitra ; Ruark, Angelica ; Weenen, Hugo ; Stahl, Bernd ; Stieger, Markus - \ 2019
Journal of Dairy Science 102 (2019)2. - ISSN 0022-0302 - p. 1116 - 1130.
bitterness - breastfeeding - human milk - maternal diet - sensory perception

It is unknown how consumption of bitter foods and beverages in the maternal diet influences sensory properties of fresh human milk. The aims of this study were (1) to determine the sensory characteristics of fresh human fore and hind milk, (2) to establish relationships between sensory properties and composition of fresh human milk, and (3) to assess the relationship between bitterness of the maternal diet and human milk. Twenty-two lactating mothers generated sensory terms to describe perception of their milk and received training on sensory attribute intensity rating. Mothers kept a 24-h food diary followed by a sensory self-assessment of their fore and hind milks. The odor of human fresh milk was described as neutral, creamy, and sweet, taste as sweet and bitter, and mouthfeel as thin, watery, smooth, and fatty. Sweetness was equivalent to 1.53 g of sucrose/100 mL and was not significantly different between fore and hind milk. Fore milk was significantly less creamy, less fatty, thinner, more watery, and lower in vanilla flavor intensity than hind milk. Carbohydrate content of human milk was positively correlated with sweetness and glutamic acid content with umami. The bitterness of the diet consumed 24 h before lactation was moderately positively correlated with bitterness of fore milk, but not hind milk. We conclude that the consumption of bitter foods may influence the bitterness of human fore milk, which may be another way for breastfed children to learn to accept bitter vegetables and, hence, develop healthier food preferences.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.