Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites
    Bielecki, P. ; Komor, U. ; Bielecka, A. ; Müsken, M. ; Puchalka, J. ; Pletz, M.W. ; Ballmann, M. ; Martins Dos Santos, V.A.P. ; Weiss, S. ; Häussler, S. - \ 2013
    Environmental Microbiology 15 (2013)2. - ISSN 1462-2912 - p. 570 - 587.
    burn wound infections - biofilm formation - cystic-fibrosis - therapeutic strategies - expression - motility - mutants - protein - system - identification
    The opportunistic bacterium Pseudomonas aeruginosa is a major nosocomial pathogen causing both devastating acute and chronic persistent infections. During the course of an infection, P.¿ aeruginosa rapidly adapts to the specific conditions within the host. In the present study, we aimed at the identification of genes that are highly expressed during biofilm infections such as in chronically infected lungs of patients with cystic fibrosis (CF), burn wounds and subcutaneous mouse tumours. We found a common subset of differentially regulated genes in all three in vivo habitats and evaluated whether their inactivation impacts on the bacterial capability to form biofilms in vitro and to establish biofilm-associated infections in a murine model. Additive effects on biofilm formation and host colonization were discovered by the combined inactivation of several highly expressed genes. However, even combined inactivation was not sufficient to abolish the establishment of an infection completely. These findings can be interpreted as evidence that either redundant traits encode functions that are essential for in vivo survival and chronic biofilm infections and/or bacterial adaptation is considerably achieved independently of transcription levels. Supplemental screens, will have to be applied in order to identify the minimal set of key genes essential for the establishment of chronic infectious diseases
    In-Vivo Expression Profiling of Pseudomonas aeruginosa Infections Reveals Niche-Specific and Strain-Independent Transcriptional Programs
    Bielecki, P. ; Puchalka, J. ; Wos-Oxley, M.L. ; Martins Dos Santos, V.A.P. - \ 2011
    PLoS ONE 6 (2011). - ISSN 1932-6203 - 11 p.
    metabolic network analysis - burn wound infections - gene-expression - opportunistic pathogen - virulence factors - biofilm formation - microarray data - plant hosts - identification - carbon
    Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.