Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer
    Malenovsky, Z. ; Homolova, L. ; Zurita-Milla, R. ; Lukes, P. ; Kaplan, V. ; Hanus, J. ; Gastellu-Etchegorry, J.P. ; Schaepman, M.E. - \ 2013
    Remote Sensing of Environment 131 (2013). - ISSN 0034-4257 - p. 85 - 102.
    canopy reflectance models - optical-properties model - area index - hyperspectral data - forest canopies - precision agriculture - vegetation canopies - red - band - absorption
    We investigate combined continuum removal and radiative transfer (RT) modeling to retrieve leaf chlorophyll a & b content (Cab) from the AISA Eagle airborne imaging spectrometer data of sub-meter (0.4 m) spatial resolution. Based on coupled PROSPECT-DART RT simulations of a Norway spruce (Picea abies (L.) Karst.) stand, we propose a new Cab sensitive index located between 650 and 720 nm and termed ANCB650–720. The performance of ANCB650–720 was validated against ground-measured Cab of ten spruce crowns and compared with Cab estimated by a conventional artificial neural network (ANN) trained with continuum removed RT simulations and also by three previously published chlorophyll optical indices: normalized difference between reflectance at 925 and 710 nm (ND925&710), simple reflectance ratio between 750 and 710 nm (SR750/710) and the ratio of TCARI/OSAVI indices. Although all retrieval methods produced visually comparable Cab spatial patterns, the ground validation revealed that the ANCB650–720 and ANN retrievals are more accurate than the other three chlorophyll indices (R2 = 0.72 for both methods). ANCB650–720 estimated Cab with an RMSE = 2.27 µg cm- 2 (relative RRMSE = 4.35%) and ANN with an RMSE = 2.18 µg cm- 2 (RRMSE = 4.18%), while SR750/710 with an RMSE = 4.16 µg cm- 2 (RRMSE = 7.97%), ND925&710 with an RMSE = 9.07 µg cm- 2 (RRMSE = 17.38%) and TCARI/OSAVI with an RMSE = 12.30 µg cm- 2 (RRMSE = 23.56%). Also the systematic RMSES was lower than the unsystematic one only for the ANCB650–720 and ANN retrievals. Our results indicate that the newly proposed index can provide the same accuracy as ANN except for Cab values below 30 µg cm- 2, which are slightly overestimated (RMSE = 2.42 µg cm- 2). The computationally efficient ANCB650–720 retrieval provides accurate high spatial resolution airborne Cab maps, considerable as a suitable reference data for validating satellite-based Cab products.
    PROSPECT and SAIL models: a review of use for vegetation characterization
    Jacquemond, S. ; Verhoef, W. ; Baret, F. ; Bacour, C. ; Zarco-Tejada, P. ; Asner, G.P. ; Francois, C. ; Ustin, S.L. - \ 2009
    Remote Sensing of Environment 113 (2009)Suppl 1. - ISSN 0034-4257 - p. S56 - S66.
    radiative-transfer models - remote-sensing data - leaf optical-properties - canopy reflectance models - cyclopes global products - sugar-beet canopies - chlorophyll content - water-content - area index - bidirectional reflectance
    The combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model, also referred to as PROSAIL, has been used for about sixteen years to study plant canopy spectral and directional reflectance in the solar domain. PROSAIL has also been used to develop new methods for retrieval of vegetation biophysical properties. It links the spectral variation of canopy reflectance, which is mainly related to leaf biochemical contents, with its directional variation, which is primarily related to canopy architecture and soil/vegetation contrast. This link is key to simultaneous estimation of canopy biophysical/structural variables for applications in agriculture, plant physiology, or ecology, at different scales. PROSAIL has become one of the most popular radiative transfer tools due to its ease of use, general robustness, and consistent validation by lab/field/space experiments over the years. However, PROSPECT and SAIL are still evolving: they have undergone recent improvements both at the leaf and the plant levels. This paper provides an extensive review of the PROSAIL developments in the context of canopy biophysics and radiative transfer modeling
    Applicability of the PROSPECT model for Norway spruce needles
    Malenovsky, Z. ; Albrechtova, J. ; Lhotakova, Z. ; Zurita Milla, R. ; Clevers, J.G.P.W. ; Schaepman, M.E. ; Cudlin, P. - \ 2006
    International Journal of Remote Sensing 27 (2006)24/20. - ISSN 0143-1161 - p. 5315 - 5340.
    chlorophyll content estimation - canopy reflectance models - radiative-transfer models - remote-sensing data - leaf-area index - optical-properties - conifer needles - forest - vegetation - inversion
    The potential applicability of the leaf radiative transfer model PROSPECT (version 3.01) was tested for Norway spruce (Picea abies (L.) Karst.) needles collected from stress resistant and resilient trees. Direct comparison of the measured and simulated leaf optical properties between 450¿1000 nm revealed the requirement to recalibrate the PROSPECT chlorophyll and dry matter specific absorption coefficients kab(¿) and km(¿). The subsequent validation of the modified PROSPECT (version 3.01.S) showed close agreement with the spectral measurements of all three needle age¿classes tested; the root mean square error (RMSE) of all reflectance (¿) values within the interval of 450¿1000 nm was equal to 1.74%, for transmittance (¿) it was 1.53% and for absorbance (¿) it was 2.91%. The total chlorophyll concentration, dry matter content, and leaf water content were simultaneously retrieved by a constrained inversion of the original PROSPECT 3.01 and the adjusted PROSPECT 3.01.S. The chlorophyll concentration estimated by inversion of both model versions was similar, but the inversion accuracy of the dry matter and water content was significantly improved. Decreases in RMSE from 0.0079 g cm¿2 to 0.0019 g cm¿2 for dry matter and from 0.0019 cm to 0.0006 cm for leaf water content proved the improved performance of the recalibrated PROSPECT version 3.01.S.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.