Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 10 / 10

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Data from: Carbon recovery dynamics following disturbance by selective logging in Amazonian forests
    Piponiot, Camille ; Sist, Plinio ; Mazzei, Lucas ; Pena Claros, M. ; Putz, Francis E. ; Rutishauser, Ervan ; Shenkin, Alexander ; Ascarrunz, Nataly ; Azevedo, Celso P. de; Baraloto, Christopher - \ 2016
    Wageningen University & Research
    carbon stocks - disturbance - selective logging - REDD+
    When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21{plus minus}3 MgC ha-1) than in the south (12{plus minus}3 MgC ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.
    Mitigation of agricultural emissions in the tropics: comparing forest land-sparing options at the national level
    Carter, S.L. ; Herold, M. ; Rufino, M.C. ; Neumann, K. ; Kooistra, L. ; Verchot, L. - \ 2015
    Biogeosciences 12 (2015). - ISSN 1726-4170 - p. 4809 - 4825.
    greenhouse-gas mitigation - carbon stocks - deforestation - intensification - food - 21st-century - cropland - policies - regions - maps
    Emissions from agriculture-driven deforestation are of global concern, but forest land-sparing interventions such as agricultural intensification and utilization of available non-forest land offer opportunities for mitigation. In many tropical countries, where agriculture is the major driver of deforestation, interventions in the agriculture sector could reduce deforestation emissions as well as reduce emissions in the agriculture sector. Our study uses a novel approach to quantify agriculture-driven deforestation and associated emissions in the tropics between 2000 and 2010. Emissions from agriculture-driven deforestation in the tropics (97 countries) are 4.3 GtCO2e yr-1. We investigate the national potential to mitigate these emissions through forest land-sparing interventions, which can potentially be implemented under REDD+. We consider intensification and utilization of available non-forested land as forest land-sparing opportunities since they avoid the expansion of agriculture into forested land. In addition, we assess the potential to reduce agricultural emissions on existing agriculture land. The use of a systematic framework demonstrates the selection of mitigation interventions by considering sequentially the level of emissions, mitigation potential of various interventions, enabling environment and associated risks to livelihoods at the national level. Our results show that considering only countries with high emissions from agriculture-driven deforestation, with potential for forest-sparing interventions and a good enabling environment (e.g. effective governance or engagement in REDD+), there is a potential to mitigate 1.3 GtCO2e yr-1 (20 countries of 78 with sufficient data). For countries where we identify agricultural emissions as a priority for mitigation, up to 1 GtCO2e yr-1 could be reduced from the agriculture sector including livestock. Risks to livelihoods from implementing interventions based on national level data call for detailed investigation at the local level to inform decisions on mitigation interventions. Three case studies demonstrate the use of the analytical framework. The inherent link between the agriculture and forestry sectors due to competition for land suggests that these sectors cannot be considered independently. Our findings highlight the need to include the forest and the agricultural sectors in the decision-making process to mitigate deforestation.
    Aggregation and organic matter in subarctic Andosols under different grassland management
    Lehtinen, T. ; Gisladottir, G. ; Lair, G.J. ; Leeuwen, J.P. van; Blum, W.E.H. ; Bloem, J. ; Steffens, M. ; Ragnarsdottir, K.V. - \ 2015
    Acta Agriculturae Scandinavica Section B-Soil and Plant Science 65 (2015)3. - ISSN 0906-4710 - p. 246 - 263.
    c-13 nmr-spectroscopy - soil microbial biomass - mediterranean conditions - structural stability - cultivated soils - farming systems - volcanic soils - carbon stocks - land-use - tillage
    Quantity and quality of soil organic matter (SOM) affect physical, chemical, and biological soil properties, and are pivotal to productive and healthy grasslands. Thus, we analyzed the distribution of soil aggregates and assessed quality, quantity, and distribution of SOM in two unimproved and improved (two organic and two conventional) grasslands in subarctic Iceland, in Haplic and Histic Andosols. We also evaluated principal physicochemical and biological soil properties, which influence soil aggregation and SOM dynamics. Macroaggregates (>250 µm) in topsoils were most prominent in unimproved (62–77%) and organically (58–69%) managed sites, whereas 20–250 µm aggregates were the most prominent in conventionally managed sites (51–53%). Macroaggregate stability in topsoils, measured as mean weight diameter, was approximately twice as high in organically managed (12–20 mm) compared with the conventionally managed (5–8 mm) sites, possibly due to higher organic inputs (e.g., manure, compost, and cattle urine). In unimproved grasslands and one organic site, macroaggregates contributed between 40% and 70% of soil organic carbon (SOC) and nitrogen to bulk soil, whereas in high SOM concentration sites free particulate organic matter contributed up to 70% of the SOC and nitrogen to bulk soil. Aggregate hierarchy in Haplic Andosols was confirmed by different stabilizing mechanisms of micro- and macroaggregates, however, somewhat diminished by oxides (pyrophosphate-, oxalate-, and dithionite-extractable Fe, Al, and Mn) acting as binding agents for macroaggregates. In Histic Andosols, no aggregate hierarchy was observed. The higher macroaggregate stability in organic farming practice compared with conventional farming is of interest due to the importance of macroaggregates in protecting SOM and soils from erosion, which is a prerequisite for soil functions in grasslands that are envisaged for food production in the future.
    Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010
    Fuchs, R. ; Herold, M. ; Verburg, P.H. ; Clevers, J.G.P.W. ; Eberle, J. - \ 2015
    Global Change Biology 21 (2015)1. - ISSN 1354-1013 - p. 299 - 313.
    spatially explicit - secondary lands - use transitions - high-resolution - carbon stocks - wood-harvest - hyde 3.1 - climate - population - planet
    Historic land-cover/use change is important for studies on climate change, soil carbon, and biodiversity assessments. Available reconstructions focus on the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). This leads to a serious underestimation of land-cover/use dynamics with impacts on the biogeochemical and environmental assessments based on these reconstructions. In this study, we quantified to what extent land-cover/use reconstructions underestimate land-cover/use changes in Europe for the 1900–2010 period by accounting for net changes only. We empirically analyzed available historic land-change data, quantified their uncertainty, corrected for spatial-temporal effects and identified underlying processes causing differences between gross and net changes. Gross changes varied for different land classes (largest for forest and grassland) and led to two to four times the amount of net changes. We applied the empirical results of gross change quantities in a spatially explicit reconstruction of historic land change to reconstruct gross changes for the EU27 plus Switzerland at 1 km spatial resolution between 1950 and 2010. In addition, the reconstruction was extended back to 1900 to explore the effects of accounting for gross changes on longer time scales. We created a land-change reconstruction that only accounted for net changes for comparison. Our two model outputs were compared with five commonly used global reconstructions for the same period and area. In our reconstruction, gross changes led in total to a 56% area change (ca. 0.5% yr-1) between 1900 and 2010 and cover twice the area of net changes. All global reconstructions used for comparison estimated fewer changes than our gross change reconstruction. Main land-change processes were cropland/grassland dynamics and afforestation, and also deforestation and urbanization.
    Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands
    Oliveras Menor, I. ; Eynden, M. van der; Malhi, Y. ; Cahuana, N. ; Menor, C. ; Zamora, F. ; Haugaasen, T. - \ 2014
    Austral Ecology: a journal of ecology in the Southern Hemisphere 39 (2014)4. - ISSN 1442-9985 - p. 408 - 415.
    net primary productivity - carbon stocks - forests - transformation - vegetation - equations - dynamics - ecuador - balance - paramo
    The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above-ground biomass and developed species specific and multispecies power-law allometric equations for four tussock grass species in Peruvian high altitude grasslands, considering maximum height (hmax), elliptical crown area and elliptical basal area. Although these predictors are commonly used among allometric literature, they have not previously been used for estimating puna grassland biomass. Total above-ground biomass was estimated to be of 6.7¿±¿0.2 Mg ha-1 (3.35¿±¿0.1 Mg C ha-1). All allometric relationships fitted to similar power-law models, with basal area and crown area as the most influential predictors, although the fit improved when tussock maximum height was included in the model. Multispecies allometries gave better fits than the other species-specific equations, but the best equation should be used depending on the species composition of the target grassland. These allometric equations provide an useful approach for measuring above-ground biomass and productivity in high-altitude Andean grasslands, where destructive sampling can be challenging and difficult because of the remoteness of the area. These equations can be also applicable for establishing above-ground reference levels before the adoption of carbon compensation mechanisms or grassland management policies, as well as for measuring the impact of land use changes in Andean ecosystems.
    Reducing emissions from land use in Indonesia: motivation, policy instruments and expected funding streams
    Noordwijk, M. van; Agus, F. ; Dewi, S. ; Purnomo, H. - \ 2014
    Mitigation and Adaptation Strategies for Global Change 19 (2014)6. - ISSN 1381-2386 - p. 677 - 692.
    redd plus - forest degradation - multifunctional landscapes - southeast-asia - carbon stocks - co2 emissions - fallow model - deforestation - opportunities - incentives
    Land-based emissions of carbon dioxide derive from the interface of forest and agriculture. Emission estimates require harmonization across forest and non-forest data sources. Furthermore, emission reduction requires understanding of the linked causes and policy levers between agriculture and forestry. The institutional forestry traditions dominated the emergence of the discourse on Reducing Emissions from Deforestation and forest Degradation (REDD+) whilemore holistic perspectives on land-based emissions, including agriculture, found a home in international recognition for Nationally Appropriate Mitigation Actions (NAMAs). We tested the hypothesis that, at least for Indonesia, the NAMA framework provides opportunities to resolve issues that REDD+ alone cannot address.We reviewed progress on five major challenges identified in 2007 by the Indonesian Forest Climate Alliance: 1) scope and ‘forest’ definition; 2) ownership and tenurial rights; 3) multiplicity and interconnectedness of drivers; 4) peatland issues across forest and non-forest land categories; and 5) fairness and efficiency of benefitdistribution mechanisms across conservation, degradation and restoration phases of tree-cover transition. Results indicate that the two policy instruments developed in parallel with competition rather than synergy. Three of the REDD+ challenges can be resolved by treating REDD+ as a subset of the NAMA and national emission reduction plans for Indonesia.We conclude that two issues, rights and benefit distribution, remain a major challenge, and require progress on a motivational pyramid of policy and polycentric governance. National interest in retaining global palm oil exports gained priority over expectations of REDD forest rents. Genuine concerns over climate change motivate a small but influential part of the ongoing debate.
    Woody biomass on farms and in the landscapes of Rwanda
    Ndayambaje, J.D. ; Mugiraneza, T. ; Mohren, G.M.J. - \ 2014
    Agroforestry Systems 88 (2014)1. - ISSN 0167-4366 - p. 101 - 124.
    agroforestry practices - aboveground biomass - tropical forests - carbon stocks - systems - conservation - management - india - sequestration - agroecosystem
    Scattered trees and woodlots are a prominent feature of agricultural landscapes of Rwanda. However, little is known about their characteristics and their contribution to farmers’ wood needs. Here, we present the results of a survey of (a) the abundance, composition, and size of trees and woodlots in the low, medium and high altitude regions of Rwanda, (b) total woody biomass and biomass for fuelwood at farm and landscape levels, and (c) opportunities for their sustainable use. Scattered trees occurred in all landscapes at minimum densities ranging from 20 to 167 trees ha-1. Of the 56 tree genera recorded, a handful of tree species dominated, with the ten most common species accounting for over 70 % of all trees recorded. Most of them provided fuelwood, fruit and timber to farm owners. Woodlots occurred on about 40 % of the survey farms and consisted for 90 % of eucalyptus coppice. Woody biomass dry weight of scattered trees on agricultural landscape was 0.7 t ha-1 in low altitude region (LAR), 3 t ha-1 in medium altitude region (MAR), and 1 t ha-1 in high altitude region (HAR). Dry weight woody biomass in woodlots (
    Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics
    Slik, J.W.F. ; Paoli, G. ; McGuire, K. ; Amaral, I. ; Barroso, J. ; Bongers, F. ; Poorter, L. - \ 2013
    Global Ecology and Biogeography 22 (2013)12. - ISSN 1466-822X - p. 1261 - 1271.
    rain-forest - wood density - species composition - spatial-patterns - landscape-scale - carbon stocks - amazon - diversity - climate - monodominance
    Aim - Large trees (d.b.h.¿=¿70¿cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore which intrinsic (species trait) and extrinsic (environment) variables are associated with the density of large trees and forest biomass at continental and pan-tropical scales. Location - Pan-tropical. Methods - Aboveground biomass (AGB) was calculated for 120 intact lowland moist forest locations. Linear regression was used to calculate variation in AGB explained by the density of large trees. Akaike information criterion weights (AICc-wi) were used to calculate averaged correlation coefficients for all possible multiple regression models between AGB/density of large trees and environmental and species trait variables correcting for spatial autocorrelation. Results - Density of large trees explained c. 70% of the variation in pan-tropical AGB and was also responsible for significantly lower AGB in Neotropical [287.8 (mean)¿±¿105.0 (SD) Mg ha-1] versus Palaeotropical forests (Africa 418.3¿±¿91.8 Mg ha-1; Asia 393.3¿±¿109.3 Mg ha-1). Pan-tropical variation in density of large trees and AGB was associated with soil coarseness (negative), soil fertility (positive), community wood density (positive) and dominance of wind dispersed species (positive), temperature in the coldest month (negative), temperature in the warmest month (negative) and rainfall in the wettest month (positive), but results were not always consistent among continents. Main conclusions - Density of large trees and AGB were significantly associated with climatic variables, indicating that climate change will affect tropical forest biomass storage. Species trait composition will interact with these future biomass changes as they are also affected by a warmer climate. Given the importance of large trees for variation in AGB across the tropics, and their sensitivity to climate change, we emphasize the need for in-depth analyses of the community dynamics of large trees
    Tree height integrated into pantropical forest biomass estimates
    Feldpausch, T.R. ; Lloyd, J. ; Lewis, S.L. ; Brienen, R.J.W. ; Gloor, M. ; Montegudo Mendoza, A. ; Arets, E.J.M.M. - \ 2012
    Biogeosciences 9 (2012). - ISSN 1726-4170 - p. 3381 - 3403.
    tropical rain-forest - aboveground live biomass - net primary production - land-use change - wood density - amazonian forests - carbon stocks - allometric equations - neotropical forest - secondary forests
    Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (=40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha-1 (range 6.6 to 112.4) to 8.0 Mg ha-1 (-2.5 to 23.0). For all plots, aboveground live biomass was -52.2 Mg ha-1 (-82.0 to -20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.
    Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia
    Slik, J.W.F. ; Aiba, S.I. ; Bastian, M. ; Brearley, F.Q. ; Cannon, C.H. ; Eichhorn, K.A.O. ; Fredriksson, G. ; Kartawinata, K. ; Laumonier, Y. ; Mansor, A. ; Marjokorpi, A. ; Meijaard, E. ; Morley, R.J. ; Nagamasu, H. ; Nilus, R. ; Nurtjahya, E. ; Payne, J. ; Permana, A. ; Poulsen, A.D. ; Raes, N. ; Riswan, S. ; Schaik, C.P. ; Sheil, D. ; Sidiyasa, K. ; Suzuki, E. ; Valkenburg, J.L.C.H. van; Webb, C.O. ; Wich, S. ; Yoneda, T. ; Zakaria, R. ; Zweifel, N. - \ 2011
    Proceedings of the National Academy of Sciences of the United States of America 108 (2011)30. - ISSN 0027-8424 - p. 12343 - 12347.
    last glacial maximum - carbon stocks - vegetation - east - sea - environments - biodiversity - indicators - climate - borneo
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.