Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==convergent evolution
Check title to add to marked list
Convergent evolution of hetero-oligomeric cellulose synthesis complexes in mosses and seed plants
Li, Xingxing ; Speicher, Tori L. ; Dees, Dianka C.T. ; Mansoori, Nasim ; McManus, John B. ; Tien, Ming ; Trindade, Luisa M. ; Wallace, Ian S. ; Roberts, Alison W. - \ 2019
The Plant Journal (2019). - ISSN 0960-7412
cell wall - cellulose - cellulose synthase - cellulose synthesis complex - convergent evolution - Physcomitrella patens

In seed plants, cellulose is synthesized by rosette-shaped cellulose synthesis complexes (CSCs) that are obligate hetero-oligomeric, comprising three non-interchangeable cellulose synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancestor with seed plants had rosette CSCs and a single CESA gene. Therefore, if P. patens CSCs are hetero-oligomeric, then CSCs of this type evolved convergently in mosses and seed plants. Previous gene knockout and promoter swap experiments showed that PpCESAs from class A (PpCESA3 and PpCESA8) and class B (PpCESA6 and PpCESA7) have non-redundant functions in secondary cell wall cellulose deposition in leaf midribs, whereas the two members of each class are redundant. Based on these observations, we proposed the hypothesis that the secondary class A and class B PpCESAs associate to form hetero-oligomeric CSCs. Here we show that transcription of secondary class A PpCESAs is reduced when secondary class B PpCESAs are knocked out and vice versa, as expected for genes encoding isoforms that occupy distinct positions within the same CSC. The class A and class B isoforms co-accumulate in developing gametophores and co-immunoprecipitate, suggesting that they interact to form a complex in planta. Finally, secondary PpCESAs interact with each other, whereas three of four fail to self-interact when expressed in two different heterologous systems. These results are consistent with the hypothesis that obligate hetero-oligomeric CSCs evolved independently in mosses and seed plants and we propose the constructive neutral evolution hypothesis as a plausible explanation for convergent evolution of hetero-oligomeric CSCs.

MYB8 Controls Inducible Phenolamide Levels by Activating Three Novel Hydroxycinnamoyl-Coenzyme A:Polyamine Transferases in Nicotiana attenuata[W][OA]
Onkokesung, N. ; Gaquerel, E. ; Kotkar, H. ; Kaur, H. ; Baldwin, I.T. ; Galis, I. - \ 2012
Plant Physiology 158 (2012)1. - ISSN 0032-0889 - p. 389 - 407.
ultraviolet-b radiation - transcription factor - plant defense - acid-amides - convergent evolution - simulated herbivory - insect herbivores - responses - tobacco - metabolism
A large number of plants accumulate N-acylated polyamines (phenolamides [PAs]) in response to biotic and/or abiotic stress conditions. In the native tobacco (Nicotiana attenuata), the accumulation of two major PAs, caffeoylputrescine and dicaffeoylspermidine (DCS), after herbivore attack is known to be controlled by a key transcription factor, MYB8. Using a broadly targeted metabolomics approach, we show that a much larger spectrum of PAs composed of hydroxycinnamic acids and two polyamines, putrescine and spermidine, is regulated by this transcription factor. We cloned several novel MYB8-regulated genes, annotated as putative acyltransferases, and analyzed their function. One of the novel acyltransferases (AT1) is shown to encode a hydroxycinnamoyl-coenzyme A:putrescine acyltransferase responsible for caffeoylputrescine biosynthesis in tobacco. Another gene (acyltransferase DH29), specific for spermidine conjugation, mediates the initial acylation step in DCS formation. Although this enzyme was not able to perform the second acylation toward DCS biosynthesis, another acyltransferase gene, CV86, proposed to act on monoacylated spermidines, was isolated and partially characterized. The activation of MYB8 in response to herbivore attack and associated signals required the activity of LIPOXYGENASE3, a gene involved in jasmonic acid (JA) biosynthesis in N. attenuata. These new results allow us to reconstruct a complete branch in JA signaling that defends N. attenuata plants against herbivores: JA via MYB8’s transcriptional control of AT1 and DH29 genes controls the entire branch of PA biosynthesis, which allows N. attenuata to mount a chemically diverse (and likely efficient) defense shield against herbivores.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.