Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 4 / 4

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea)
    Sorbo, G. Del; Ruocco, M. ; Schoonbeek, H. ; Scala, F. ; Pane, C. ; Vinale, F. ; Waard, M.A. de - \ 2008
    Mycological Research 112 (2008)6. - ISSN 0953-7562 - p. 737 - 746.
    binding-cassette transporter - natural toxic compounds - saccharomyces-cerevisiae - multidrug-resistance - mycosphaerella-graminicola - drosophila-melanogaster - aspergillus-nidulans - efflux pump - cutinase-a - yeast
    BcatrA was cloned from the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea) and sequenced. Sequence analysis revealed that BcatrA encodes a protein composed of 1562 amino acid residues displaying high similarity with various fungal ATP-binding cassette (ABC) transporters having the (NBF-TM6)2 topology. Expression of BcatrA is barely detectable during normal vegetative growth in liquid substrates. Transcript levels of BcatrA are enhanced in a dose- and time-dependent manner after treatment with cycloheximide or catechol, but not by a number of other drugs or fungicides, including fludioxonil, fenarimol, imazalil, and the plant defense compounds pisatin and resveratrol. Quantitative analysis of BcatrA during the synchronized infection of bean leaves revealed an overaccumulation of the gene transcript at 6, 12 and 24 h post-inoculation, suggesting an involvement of the gene in the first steps of pathogenesis. Functional analysis of BcatrA was performed by targeted gene replacement in a wild-type strain of the fungus, and by overexpression in a mutant of Saccharomyces cerevisiae carrying multiple non-functional multidrug-resistance genes. BcatrA replacement mutants did not show any significant increase in sensitivity to drugs, including inducers of BcatrA transcription, and displayed an unaltered virulence on several common host plants of B. cinerea. However, when expressed in the heterologous system, BcatrA reduced sensitivity to cycloheximide and catechol, thus indicating the ability of the BcatrA product to function as a multidrug transporter.
    Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters
    Roohparvar, R. ; Huser, A. ; Zwiers, L.H. ; Waard, M.A. de - \ 2007
    Applied and Environmental Microbiology 73 (2007)15. - ISSN 0099-2240 - p. 5011 - 5019.
    major facilitator superfamily - natural toxic compounds - multidrug-resistance - abc transporters - botrytis-cinerea - efflux pump - fungicide sensitivity - virulence - plant - reversal
    Medical drugs known to modulate the activity of human ATP-binding cassette (ABC) transporter proteins (modulators) were tested for the ability to potentiate the activity of the azole fungicide cyproconazole against in vitro growth of Mycosphaerella graminicola and to control disease development due to this pathogen on wheat seedlings. In vitro modulation of cyproconazole activity could be demonstrated in paper disk bioassays. Some of the active modulators (amitriptyline, flavanone, and phenothiazines) increased the accumulation of cyproconazole in M. graminicola, suggesting that they reversed cyproconazole efflux. However, synergism between cyproconazole and modulators against M. graminicola on wheat seedlings could not be shown. Despite their low in vitro toxicity to M. graminicola, some modulators (amitriptyline, loperamide, and promazine) did show significant intrinsic disease control activity in preventive and curative foliar spray tests with wheat seedlings. The results suggest that these compounds have indirect disease control activity based on modulation of fungal ABC transporters essential for virulence and constitute a new class of disease control agents.
    Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol
    Schoonbeek, H. ; Nistelrooy, J.G.M. van; Waard, M.A. de - \ 2003
    European Journal of Plant Pathology 109 (2003)9. - ISSN 0929-1873 - p. 1003 - 1011.
    atp-binding cassette - fungus penicillium-digitatum - multidrug-resistance - toxic compounds - efflux pump - sensitivity - fungicides - pathogenicity - accumulation - resveratrol
    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The expression of 11 ABC (BcatrA-BcatrK) and three MFS genes (Bcmfs1, Bcmfs2 and Bcmfs4) was studied. All genes showed a low basal level of expression, but were differentially induced by treatment with cycloheximide and the plant defence compounds camptothecin, eugenol, psoralen, resveratrol and rishitin. The latter compounds induced expression of BcatrB at a high level. Eugenol was more toxic to BcatrB gene-replacement mutants than to the control isolates. Eugenol also caused an instantaneous increase in mycelial accumulation of the fungicide fludioxonil, a known substrate of BcatrB. However, there was no difference in virulence between the wild-type and BcatrB gene-replacement mutants on Ocimum basilicum, a plant known to contain eugenol. The results indicate that BcatrB is a transporter of lipophilic compounds, such as eugenol, but its role in virulence remains uncertain.
    Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea
    Hayashi, K. ; Schoonbeek, H. ; Waard, M.A. de - \ 2003
    Pest Management Science 59 (2003)3. - ISSN 1526-498X - p. 294 - 302.
    sterol demethylation inhibitors - natural toxic compounds - multidrug-resistance - efflux pump - wild-type - botryotinia-fuckeliana - penicillium-italicum - candida-albicans - accumulation - fenarimol
    Modulators known to reduce multidrug resistance in tumour cells were tested for their potency to synergize the fungitoxic activity of the fungicide oxpoconazole, a sterol demethylation inhibitor (DMI), against Botrytis cinerea Pers. Chlorpromazine, a phenothiazine compound known as a calmodulin antagonist, appeared the most potent compound. Tacrolimus, a macrolide compound with immunosuppressive activity, was also active. The synergism of chlorpromazine negatively correlated with the sensitivity of the parent strain and mutants of B cinerea. The synergism was highest in a mutant that overexpressed the ATP-binding cassette transporter BcatrD, known to transport DMI fungicides such as oxpoconazole. The synergism of chlorpromazine positively correlated with its potency to enhance the accumulation of oxpoconazole in BcatrD mutants. These results indicate that chlorpromazine is a modulator of BcatrD activity in B cinerea and suggest that mixtures of DMI fungicides with modulators may represent a perspective for the development of new resistance management strategies.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.