Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Differences in the climatic debts of birds and butterflies at a continental scale
    Devictor, V. ; Swaay, C. van; Brereton, T. ; Brotons, L. ; Chamberlain, D. ; Heliölä, J. ; Herrando, S. ; Julliard, R. ; Kuussaari, M. ; Lindström, A. ; Reif, J. ; Roy, D.B. ; Schweiger, O. ; Settele, J. ; Stefanescu, C. ; Strien, A. van; Turnhout, C. van; Vermouzek, Z. ; Wallis de Vries, M.F. ; Wynhoff, I. ; Jiguet, F. - \ 2012
    Nature Climate Change 2 (2012). - ISSN 1758-678X - p. 121 - 124.
    evolutionary responses - global change - extinction - adaptation
    Climate changes have profound effects on the distribution of numerous plant and animal species(1-3). However, whether and how different taxonomic groups are able to track climate changes at large spatial scales is still unclear. Here, we measure and compare the climatic debt accumulated by bird and butterfly communities at a European scale over two decades (1990-2008). We quantified the yearly change in community composition in response to climate change for 9,490 bird and 2,130 butterfly communities distributed across Europe(4). We show that changes in community composition are rapid but different between birds and butterflies and equivalent to a 37 and 114 km northward shift in bird and butterfly communities, respectively. We further found that, during the same period, the northward shift in temperature in Europe was even faster, so that the climatic debts of birds and butterflies correspond to a 212 and 135 km lag behind climate. Our results indicate both that birds and butterflies do not keep up with temperature increase and the accumulation of different climatic debts for these groups at national and continental scales.
    Climate change, aboveground-belowground interactions, and species range shifts
    Putten, W.H. van der - \ 2012
    Annual Review of Ecology, Evolution, and Systematics 43 (2012). - ISSN 1543-592X - p. 365 - 383.
    soil microbial communities - increased competitive ability - natural enemies - land-use - terrestrial ecosystems - evolutionary responses - litter decomposition - ecological responses - biotic interactions - plant diversity
    Changes in climate, land use, fire incidence, and ecological connections all may contribute to current species' range shifts. Species shift range individually, and not all species shift range at the same time and rate. This variation causes community reorganization in both the old and new ranges. In terrestrial ecosystems, range shifts alter aboveground-belowground interactions, influencing species abundance, community composition, ecosystem processes and services, and feedbacks within communities and ecosystems. Thus, range shifts may result in no-analog communities where foundation species and community genetics play unprecedented roles, possibly leading to novel ecosystems. Long-distance dispersal can enhance the disruption of aboveground-belowground interactions of plants, herbivores, pathogens, symbiotic mutualists, and decomposer organisms. These effects are most likely stronger for latitudinal than for altitudinal range shifts. Disrupted aboveground-belowground interactions may have influenced historical postglacial range shifts as well. Assisted migration without considering aboveground-belowground interactions could enhance risks of such range shift–induced invasions.
    Consistent phenological shifts in the making of biodiversity hotspots: the Cape flora.
    Warren, B. ; Bakker, F.T. ; Bellstedt, D.U. ; Bytebier, B. ; Claszen-Bockhoff, R. ; Dreyer, L.L. ; Edwards, A. ; Forest, F. ; Galley, C. ; Hardy, C.R. ; Linder, H.P. ; Muasya, A.M. ; Mummenhoff, K. ; Oberlander, K.C. ; Quint, M. ; Richardson, J.E. ; Savolainen, V. ; Schrire, B.D. ; Niet, T. van der; Verboom, G.A. ; Yesson, C. ; Hawkins, J.A. - \ 2011
    BMC Evolutionary Biology 11 (2011). - ISSN 1471-2148 - 11 p.
    climate-change - southern africa - ecological niches - flowering time - heterogeneous environments - evolutionary responses - adaptive radiation - rapid evolution - fossil record - sequence data
    Background The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora - South Africa's biodiversity hotspot - through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years. Results Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology. Conclusions Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.