Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    • alert
      We will mail you new results for this query: keywords==feed efficiency
    Check title to add to marked list
    Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows?
    Difford, G.F. ; Løvendahl, P. ; Veerkamp, R.F. ; Bovenhuis, H. ; Visker, M.H.P.W. ; Lassen, J. ; Haas, Y. de - \ 2020
    Journal of Dairy Science 103 (2020)3. - ISSN 0022-0302 - p. 2442 - 2459.
    breath gas measurement - carbon dioxide - feed efficiency - methane - residual feed intake

    There is considerable interest in improving feed utilization of dairy cattle while limiting losses to the environment (i.e., greenhouse gases, GHG). To breed for feed-efficient or climate-friendly cattle, it is first necessary to obtain accurate estimates of genetic parameters and correlations of feed intake, greenhouse gases, and production traits. Reducing dry matter take (DMI) requirements while maintaining production has high economic value to farmers, but DMI is costly to record and thus limited to small research or nucleus herds. Conversely, enteric methane (CH4) currently has no economic value, is also costly to record, and is limited to small experimental trials. However, breath gas concentrations of methane (CH4c) and carbon dioxide (CO2c) are relatively cheap to measure at high throughput under commercial conditions by installing sniffers in automated milking stations. The objective of this study was to assess the genetic correlations between DMI, body weight (BW), fat- and protein-corrected milk yield (FPCM), and GHG-related traits: CH4c and CO2c from Denmark (DNK) and the Netherlands (NLD). A second objective was to assess the genetic potential for improving feed efficiency and the added benefits of using CH4c and CO2c as indicators. Feed intake data were available on 703 primiparous cows in DNK and 524 in NLD; CH4c and CO2c records were available on 434 primiparous cows in DNK and 656 in NLD. The GHG-related traits were heritable (e.g., CH4c h2: DNK = 0.26, NLD = 0.15) but were differentially genetically correlated with DMI and feed efficiency in both magnitude and sign, depending on the population and the definition of feed efficiency. Across feed efficiency traits and DMI, having bulls with 100 daughters with FPCM, BW, and GHG traits resulted in sufficiently high accuracy to almost negate the need for DMI records. Despite differences in genetic correlation structure, the relatively cheap GHG-related traits showed considerable potential for improving the accuracy of breeding values of highly valuable feed intake and feed efficiency traits.

    Invited review: Determination of large-scale individual dry matter intake phenotypes in dairy cattle
    Seymour, D.J. ; Cánovas, A. ; Baes, C.F. ; Chud, T.C.S. ; Osborne, V.R. ; Cant, J.P. ; Brito, L.F. ; Gredler-Grandl, B. ; Finocchiaro, R. ; Veerkamp, R.F. ; Haas, Y. de; Miglior, F. - \ 2019
    Journal of Dairy Science 102 (2019)9. - ISSN 0022-0302 - p. 7655 - 7663.
    dry matter intake - feed efficiency

    Feed efficiency has been widely studied in many areas of dairy science and is currently seeing renewed interest in the field of breeding and genetics. A critical part of determining how efficiently an animal utilizes feed is accurately measuring individual dry matter (DM) intake. Currently, multiple methods are used to measure feed intake or determine the DM content of that feed, resulting in different levels of accuracy of measurement. Furthermore, the scale at which data need to be collected for use in genetic analyses makes some methodologies impractical. This systematic review aims to provide an overview of the current methodologies used to measure both feed intake in ruminants and DM content of feedstuffs, current methods to predict individual DM intake, and applications of large-scale intake measurements. Overall, advances in milk spectral data analysis present a promising method of estimating individual DM intake on a herd scale with further validation of prediction models. Although measurements of individual feed intake rely on the same underlying principle, the methods selected are largely dictated by the costs of capital, labor, and necessary analyses. Finally, DM methodologies were synthesized into a comprehensive protocol for use in a variety of feedstuffs.

    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.