Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer
    Fatouros, N.E. ; Pineda, A. ; Huigens, M.E. ; Broekgaarden, C. ; Shimwela, M.M. ; Figueroa Candia, I.A. ; Verbaarschot, P. ; Bukovinszky, T. - \ 2014
    Proceedings of the Royal Society. B: Biological Sciences 281 (2014)1789. - ISSN 0962-8452 - 9 p.
    furcifera horvath homoptera - plant defense - trade-offs - antiherbivore defenses - natural enemies - fitness costs - brassica-rapa - resistance - oviposition - butterflies
    Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure.
    Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana
    Blenn, B. ; Bandoly, M. ; Küffner, A. ; Otte, T. ; Geiselhardt, S. ; Fatouros, N.E. ; Hilker, M. - \ 2012
    Journal of Chemical Ecology 38 (2012)7. - ISSN 0098-0331 - p. 882 - 892.
    furcifera horvath homoptera - plant cuticular waxes - whitebacked planthopper - eceriferum mutants - trissolcus-basalis - pierid butterflies - nezara-viridula - host location - up-regulation - rice plants
    Egg deposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprouts plants induces indirect defense by changing the leaf surface, which arrests the egg parasitoid Trichogramma brassicae. Previous studies revealed that this indirect defense response is elicited by benzyl cyanide (BC), which is present in the female accessory reproductive gland (ARG) secretion and is released to the leaf during egg deposition. Here, we aimed (1) to elucidate whether P. brassicae eggs induce parasitoid-arresting leaf surface changes in another Brassicacean plant, i.e., Arabidopsis thaliana, and, if so, (2) to chemically characterize the egg-induced leaf surface changes. Egg deposition by P. brassicae on A. thaliana leaves had similar effects to egg deposition on Brussels sprouts with respect to the following: (a) Egg deposition induced leaf surface changes that arrested T. brassicae egg parasitoids. (b) Application of ARG secretion of mated female butterflies or of BC to leaves had the same inductive effects as egg deposition. Based on these results, we conducted GC-MS analysis of leaf surface compounds from egg- or ARG-induced A. thaliana leaves. We found significant quantitative differences in epicuticular waxes compared to control leaves. A discriminant analysis separated surface extracts of egg-laden, ARG-treated, untreated control and Ringer solution-treated control leaves according to their quantitative chemical composition. Quantities of the fatty acid tetratriacontanoic acid (C34) were significantly higher in extracts of leaf surfaces arresting the parasitoids (egg-laden or ARG-treated) than in respective controls. In contrast, the level of tetracosanoic acid (C24) was lower in extracts of egg-laden leaves compared to controls. Our study shows that insect egg deposition on a plant can significantly affect the quantitative leaf epicuticular wax composition. The ecological relevance of this finding is discussed with respect to its impact on the behavior of egg parasitoids.
    Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels
    Fatouros, N.E. ; Lucas-Barbosa, D. ; Weldegergis, B.T. ; Pashalidou, F.G. ; Loon, J.J.A. van; Dicke, M. ; Harvey, J.A. ; Gols, R. ; Huigens, M.E. - \ 2012
    PLoS ONE 7 (2012)8. - ISSN 1932-6203
    furcifera horvath homoptera - elm leaf beetle - whitebacked planthopper - cotesia-glomerata - herbaceous plants - pieris-brassicae - host location - rice plants - oviposition - defense
    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.