Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    An analytical algorithm for the determination of vegetation leaf area index from TRMM/TMI data
    Wen, J. ; Su, Z. - \ 2004
    International Journal of Remote Sensing 25 (2004)6. - ISSN 0143-1161 - p. 1223 - 1234.
    soil-moisture retrieval - surface-temperature - microwave emission - tibetan plateau - polarization - field - ndvi - ghz
    In this paper, an analytical algorithm for the determination of land surface vegetation Leaf Area Index (LAI) with the passive microwave remote sensing data is developed. With the developed algorithm and the Tropical Rainfall Measuring Mission/Microwave Imager (TRMM/TMI) remote sensing data collected during the Global Energy and Water Experiment (GEWEX) Asian Monsoon Experiment in Tibet (GAME/Tibet) Intensive Observation Period (IOP'98), the regional and temporal distributions of the land surface vegetation LAI have been evaluated. To validate the developed algorithm and the retrieval results, the maximum-composite Normalized Difference Vegetation Index (NDVI) data over the same study area and period are used in this study; the cloud contaminated NDVI values have been replaced by the cloud-free values reconstructed by the Harmonic ANnalysis of Time Series (HANTS) technique. The results show that the retrieved LAI is in good agreement with the cloud-free NDVI in regional and temporal distributions and in their statistical characteristics; the vegetation characteristics can be clearly assessed from the regional distribution of the retrieved LAI. As lower frequency microwave radiation can penetrate atmosphere and thin cloud layer, with the application of the passive microwave remote sensing data, the developed algorithm can be used to monitor the land surface vegetation condition more effectively.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.