Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 4 / 4

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens
    Hassinen, V.H. ; Tervahauta, A.I. ; Halimaa, P. ; Plessl, M. ; Peraniemi, S. ; Schat, H. ; Aarts, M.G.M. ; Servomaa, K. ; Karenlampi, S.O. - \ 2007
    Planta 225 (2007)4. - ISSN 0032-0935 - p. 977 - 989.
    zinc-transporter genes - heavy-metal tolerance - arabidopsis-thaliana - differential display - abc-transporter - accumulation - expression - metallothionein - identification - homeostasis
    Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.
    Functional stability of microbial communities from long-term stressed soils to additional disturbance
    Tobor-Kaplon, M.A. ; Bloem, J. ; Ruiter, P.C. de - \ 2006
    Environmental Toxicology and Chemistry 25 (2006)8. - ISSN 0730-7268 - p. 1993 - 1999.
    heavy-metal tolerance - ecosystem function relationship - leucine incorporation - thymidine incorporation - bacterial communities - arable soil - diversity - biodiversity - transformations - adaptation
    Functional stability, measured in terms of resistance and resilience of soil respiration rate and bacterial growth rate, was studied in soils from field plots that have been exposed to copper contamination and low pH for more than two decades. We tested whether functional stability follows patterns predicted by either the "low stress-high stability" or the "high stress-high stability" theory. Treatments consisting of soils with no or high copper load (0 or 750 kg/ha) and with low or neutral pH (4.0 or 6.1) were used. Stability was examined by applying an additional disturbance by heat (50 degrees C for 18 h) or drying-rewetting cycles. After heating, the respiration rate indicated that the soils without copper were less stable (more affected) than the soils with 750 kg/ha. Bacterial growth rate was more stable (resistant) to heat in the pH 6.1 than in the pH 4.0 soils. Growth rate was stimulated rather than inhibited by heating and was highly resilient in all soils. The respiration rate was less affected by drying-rewetting cycles in the pH 4.0 soils than in the pH 6.1 soils. Bacterial growth rate after drying-rewetting disturbance showed no distinct pattern of stability. We found that the stability of a particular process could vary significantly, depending on the kind of disturbance; therefore, neither of the two theories could adequately predict the response of the microbial community to disturbance.
    Functional stability of microbial communities in contaminated soils near a zinc smelter (Budel, the Netherlands)
    Tobor-Kaplon, M.A. ; Bloem, J. ; Römkens, P.F.A.M. ; Ruiter, P.C. de - \ 2006
    Ecotoxicology 15 (2006)2. - ISSN 0963-9292 - p. 187 - 197.
    ecosystem function relationship - heavy-metal tolerance - bacterial communities - multiple stressors - biodiversity - adaptation - thymidine - pollution - gradient - impacts
    Environmental pollution causes adverse effects on many levels of ecosystem organization; it might affect the use efficiency of available resources which will make the system more sensitive to subsequent stress. Alternatively the development of community tolerance may make the system more resistant to additional stresses. In this study we investigate the functional stability, measured in the terms of resistance and resilience, of microbial populations inhabiting contaminated soils near a zinc smelter. With functional stability we mean that we look at processes rather than at population dynamics. We measure changes in respiration and bacterial growth rate in response to addition of stress (lead, salt) or disturbance (heat). We used soils that differ in the level of pollution with zinc and cadmium originating from an adjacent smelter. Our results showed, with regard to respiration, that the most polluted soils have the lowest stability to salt (stress) and heat (disturbance). This confirms the hypothesis that more stressed systems have less energy to cope with additional stress or disturbance. However, bacterial growth rates were affected in a different way than respiration. There was no difference between the soils in resistance and resilience to addition of lead. In case of salt treatment, the least polluted soils showed highest stability. In contrast, the least polluted soils were the least stable to increased temperature, which supports the hypothesis that more stressed soils are more stable to additional stress/disturbance due to properties they gained when exposed to the first stress (pollution by the smelter). Thus, the responses of microbial processes to stress, their nature and size, depend on the kinds of stress factors, especially whether a subsequent stress is similar to the first stress, in terms of the mechanism with which the organisms deal with the stress.
    Functional stability of microbial communities in contaminated soils
    Tobor-Kaplon, M.A. ; Bloem, J. ; Römkens, P.F.A.M. ; Ruiter, P.C. de - \ 2005
    Oikos 111 (2005)1. - ISSN 0030-1299 - p. 119 - 129.
    heavy-metal tolerance - ecosystem function relationship - fatty-acid-composition - leucine incorporation - thymidine incorporation - bacterial communities - arable soil - biodiversity - diversity - pollution
    Functional stability, measured in terms of resistance and resilience of respiration and growth rate of bacteria and fungi, was studied in soils that have been exposed to copper and low pH for more than twenty years. We used treatments, consisting of soil with no or high copper load (0 or 750 kg ha(-1)) and low or neutral pH (4.0 or 6.1). Stability was examined by applying an additional stress in the form of lead or salt. After addition of lead, respiration (decomposition of freshly added lucerne meal) showed lower resistance at low than at neutral pH and at high copper than at low copper. The most acid and contaminated soil was the least resistant. Respiration showed no resilience after addition of lead. Bacterial growth rate (thymidine incorporation) also showed resistance at low pH but only in soils that were not contaminated with copper. After addition of salt, respiration showed no differences in resistance but the soils without copper contamination showed higher resilience. Bacterial growth rate showed lower resistance at low pH than at neutral pH, the latter in which the growth rate increased by on average 123%. This increase at high pH was faster in soil without copper than in soil with copper contamination in which the growth rate initially decreased and then increased. The effects of secondary stress depended on the nature of the stress (lead or salt) and on the parameter measured (respiration or bacterial growth rate). In general the highest resistance and/or resilience were found in the least contaminated soils with neutral pH and/or no copper contamination. Thus, the microbial communities in the cleaner soils showed the highest functional stability. The results seem to confirm the notion that environmental stress alters ecosystems such that supplementary stress will have stronger impacts than in an unstressed system. The results may also confirm the insurance-hypothesis that reduced biodiversity due to the first stress negatively affected community stability. As an alternative, we discuss the observed effects in terms of altered energy budget.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.