Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 3 / 3

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species
    Onoda, Y. ; Schieving, F. ; Anten, N.P.R. - \ 2015
    Journal of Experimental Botany 66 (2015)9. - ISSN 0022-0957 - p. 2487 - 2499.
    herbaceous plants - tissue stresses - mechanical-properties - maize leaf - biomechanics - organs - growth - perspective - irradiance - sunflower
    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses.
    Assessment of intergenomic recombination through GISH analysis of F1, BC1 and BC2 progenies of Tulipa gesneriana and T. fosteriana
    Marasek Ciolakowska, A.R. ; He, H. ; Bijman, P.J.J. ; Ramanna, M.S. ; Arens, P. ; Tuyl, J.M. van - \ 2012
    Plant Systematics and Evolution 298 (2012)5. - ISSN 0378-2697 - p. 887 - 899.
    in-situ hybridization - sexual polyploidization - species relationships - chromosome variation - herbaceous plants - lilium hybrids - garden tulips - clusiana dc - cultivars - liliaceae
    Using 23 F1 hybrids, 14 BC1 and 32 BC2 progenies, the genome composition of Darwin hybrid tulips was analysed through genomic in situ hybridisation (GISH) of somatic chromosomes. All plants were diploids (2n = 2x = 24) with the exception of one tetraploid BC1 (2n = 4x = 48) and one aneuploid BC2 (2n = 2x + 1 = 25) hybrid. Morphometric analysis in F1 hybrids revealed a difference in the total length of chromosomes representing genomes of T. gesneriana and T. fosteriana, where the percentage of each genome equaled 55.18 ± 0.8 and 44.92 ± 0.6% respectively. GISH distinguished chromosomes from both parent genomes although there was a lack of consistent chromosome labelling in some cases. In both T. gesneriana and T. fosteriana chromosomes some segments of heterochromatin in the telomeric and intercalary regions exhibited a higher intensity of fluorescence. In situ hybridisation with 5S rDNA and 45S rDNA probes to metaphase chromosomes of F1 hybrids showed that these regions are rich in rDNA. A notable feature was that, despite genome differences, there was a considerable amount of intergenomic recombination between the parental chromosomes of the two species as estimated in both BC1 and BC2 offspring. The number of recombinant chromosomes ranged from 3 to 8 in BC1 and from 1 to 7 in BC2 progenies. All recombinant chromosomes possessed mostly a single recombinant segment derived from either a single crossover event or in a few cases double crossover events. This explains the fact that, unlike the situation in most F1 hybrids of other plant species, certain genotypes of Darwin hybrid tulips behave like normal diploid plants producing haploid gametes and give rise to mostly diploid sporophytes.
    Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels
    Fatouros, N.E. ; Lucas-Barbosa, D. ; Weldegergis, B.T. ; Pashalidou, F.G. ; Loon, J.J.A. van; Dicke, M. ; Harvey, J.A. ; Gols, R. ; Huigens, M.E. - \ 2012
    PLoS ONE 7 (2012)8. - ISSN 1932-6203
    furcifera horvath homoptera - elm leaf beetle - whitebacked planthopper - cotesia-glomerata - herbaceous plants - pieris-brassicae - host location - rice plants - oviposition - defense
    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.