Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 4 / 4

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Consistent phenological shifts in the making of biodiversity hotspots: the Cape flora.
    Warren, B. ; Bakker, F.T. ; Bellstedt, D.U. ; Bytebier, B. ; Claszen-Bockhoff, R. ; Dreyer, L.L. ; Edwards, A. ; Forest, F. ; Galley, C. ; Hardy, C.R. ; Linder, H.P. ; Muasya, A.M. ; Mummenhoff, K. ; Oberlander, K.C. ; Quint, M. ; Richardson, J.E. ; Savolainen, V. ; Schrire, B.D. ; Niet, T. van der; Verboom, G.A. ; Yesson, C. ; Hawkins, J.A. - \ 2011
    BMC Evolutionary Biology 11 (2011). - ISSN 1471-2148 - 11 p.
    climate-change - southern africa - ecological niches - flowering time - heterogeneous environments - evolutionary responses - adaptive radiation - rapid evolution - fossil record - sequence data
    Background The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora - South Africa's biodiversity hotspot - through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years. Results Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology. Conclusions Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.
    A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani
    Jeger, M.J. ; Lamour, A. ; Gilligan, C.A. ; Otten, W. - \ 2008
    New Phytologist 178 (2008)3. - ISSN 0028-646X - p. 625 - 633.
    steady-state approximation - heterogeneous environments - nitrogen limitation - biological-control - soil - translocation - mycelia - variability - networks - patterns
    Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into carbon-limited environments with two characteristics driving fungal growth, namely the carbon decomposition rate and a measure of carbon use efficiency. The dynamics of fungal spread through a population of sites with either low (0.0074 mg) or high (0.016 mg) carbon content were well described by the simplified model with faster colonization for the carbon-rich environment. Rhizoctonia solani responded to a lower carbon availability by increasing the carbon use efficiency and the carbon decomposition rate following colonization. The results are discussed in relation to fungal invasion thresholds in terms of carbon nutrition.
    Patch densities determines movement patterns and foraging efficiency of large herbivores
    Knegt, H.J. de; Hengeveld, G.M. ; Langevelde, F. van; Boer, W.F. de; Kirkman, K.P. - \ 2007
    Behavioral Ecology 18 (2007)6. - ISSN 1045-2249 - p. 1065 - 1072.
    correlated random-walk - area-restricted search - heterogeneous environments - chemosensory responses - spatial-distribution - landscape structure - dispersal behavior - shortgrass prairie - fractal landscapes - animal behavior
    Few experimental studies have tested theoretical predictions regarding the movement strategies of large herbivores and their consequences for foraging efficiency. We therefore analyze how the movement and foraging behavior of goats are related to patch density, with patches being trees and bushes. We show that their movements become slower and more tortuous when patch density increases, resulting in shorter steps, more acute turns, and a lower net displacement. Furthermore, the movements of the goats can be well described by Lévy walks (LWs). In agreement with hypotheses generated by LW models, the goats move with µ 2 at low patch density but with µ 3 when patches are abundant. However, simplified statistical descriptors of movement patterns like the shape of the step/flight length and turn angle distributions become insufficient in predicting foraging efficiency when patch density is high because then the sequence of steps and turns becomes an important determinant of foraging efficiency. By changing their movements and behavior with increasing patch density, the goats intensify their utilization of resources and consequently are able to raise the efficiency of the foraging process more than proportional to the increase in patch density. This resembles the concept of area-restricted search, stating that animals concentrate their foraging effort in areas with high reward, thereby increasing the efficiency of foraging. The findings as presented in this paper provide support for theoretical expectations on the movement and foraging behavior of large herbivores in relation to resource density.
    The genetic basis of adaptive population differentiation: A quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats
    Verhoeven, K.J.F. ; Vanhala, T.K. ; Biere, A. ; Nevo, E. ; Damme, J.M.M. van - \ 2004
    Evolution 58 (2004)2. - ISSN 0014-3820 - p. 270 - 283.
    local adaptation - hordeum-spontaneum - agronomic traits - heterogeneous environments - drosophila-melanogaster - inbreeding depression - host specialization - natural-populations - molecular markers - annual plant
    We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F-3 Progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F-3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype X nutrient interaction in the common-garden experiment and genotype X site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.