Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 11 / 11

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Novel Curvularia species from clinical specimens
    Madrid, H. ; Cunha, K.C. da; Gené, J. ; Dijksterhuis, J. ; Cano, J. ; Sutton, D.A. ; Guarro, J. ; Crous, P.W. - \ 2014
    Persoonia 33 (2014). - ISSN 0031-5850 - p. 48 - 60.
    internal transcribed spacer - allergic bronchopulmonary mycosis - antifungal susceptibility - bipolaris-australiensis - invasive sinusitis - genus curvularia - ribosomal dna - alternaria - cochliobolus - helminthosporium
    The fungal genus Curvularia includes numerous plant pathogens and some emerging opportunistic pathogens of humans. In a previous study we used morphology and sequences of the nuclear ribosomal internal transcribed spacer region (ITS) and the glyceraldehyde-3-phosphate dehydrogenase (gpd) gene to identify species within a set of 99 clinical Curvularia isolates from the USA. Seventy-two isolates could be identified while the remaining 27 isolates belonged in three unclassified clades that were tentatively labelled Curvularia sp. I, II and III. In the present study, we further assess the taxonomic placement of these isolates using sequences of ITS, gpd, the large subunit rDNA, and the second largest subunit of RNA polymerase II. DNA sequence comparisons with a set of 87 isolates representing 33 Curvularia spp. and members of the closely-related genera Bipolaris and Exserohilum revealed that Curvularia sp. I, II and III represent novel lineages in Curvularia. These lineages are morphologically different from the currently accepted species. In the phylogenetic tree, Curvularia sp. I and sp. III were each split into two distinct lineages. Morphology and phylogeny supported the proposal of five new species, to be named C. americana, C. chlamydospora, C. hominis, C. muehlenbeckiae and C. pseudolunata. The concatenated 4-locus phylogeny revealed the existence of six clades in Curvularia, which are associated with particular morphological features. They were named after representative species, namely americana, eragrostidis, hominis, lunata, spicifera and trifolii.
    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
    Schoch, C.L. ; Robbertse, B. ; Robert, V. ; Vu, D. ; Cardinali, G. ; Irinyi, L. ; Meyer, W. ; Nilsson, R.H. ; Hughes, K. ; Miller, A.N. ; Kirk, P.M. ; Abarenkov, K. ; Aime, M.C. ; Ariyawansa, H.A. ; Bidartondo, M. ; Boekhout, T. ; Buyck, B. ; Cai, Q. ; Chen, J. ; Crespo, A. ; Crous, P.W. ; Damm, U. ; Beer, Z.W. de; Dentinger, B.T.M. ; Divakar, P.K. ; Duenas, M. ; Feau, N. ; Fliegerova, K. ; Garcia, M.A. ; Ge, Z.W. ; Griffith, G.W. ; Groenewald, J.Z. ; Groenewald, M. ; Grube, M. ; Gryzenhout, M. ; Gueidan, C. ; Guo, L. ; Hambleton, S. ; Hamelin, R. ; Hansen, K. ; Hofstetter, V. ; Hong, S.B. ; Houbraken, J. ; Hyde, K.D. ; Inderbitzin, P. ; Johnston, P.A. ; Karunarathna, S.C. ; Koljalg, U. ; Kovacs, G.M. ; Kraichak, E. ; Krizsan, K. ; Kurtzman, C.P. ; Larsson, K.H. ; Leavitt, S. ; Letcher, P.M. ; Liimatainen, K. ; Liu, J.K. ; Lodge, D.J. ; Luangsa-ard, J.J. ; Lumbsch, H.T. ; Maharachchikumbura, S.S.N. ; Manamgoda, D. ; Martin, M.P. ; Minnis, A.M. ; Moncalvo, J.M. ; Mule, G. ; Nakasone, K.K. ; Niskanen, T. ; Olariaga, I. ; Papp, T. ; Petkovits, T. ; Pino-Bodas, R. ; Powell, M.J. ; Raja, H.A. ; Redecker, D. ; Sarmiento-Ramirez, J.M. ; Seifert, K.A. ; Shrestha, B. ; Stenroos, S. ; Stielow, B. ; Suh, S.O. ; Tanaka, K. ; Tedersoo, L. ; Telleria, M.T. ; Udayanga, D. ; Untereiner, W.A. ; Dieguez Uribeondo, J. ; Subbarao, K.V. ; Vagvolgyi, C. ; Visagie, C. ; Voigt, K. ; Walker, D.M. ; Weir, B.S. ; Weiss, M. ; Wijayawardene, N.N. ; Wingfield, M.J. ; Xu, J.P. ; Yang, Z.L. ; Zhang, N. ; Zhuang, W.Y. ; Federhen, S. - \ 2014
    Database : the Journal of Biological Databases and Curation 2014 (2014). - ISSN 1758-0463 - 21 p.
    internal transcribed spacer - arbuscular mycorrhizal fungi - ribosomal dna - interspecific hybridization - sequence analyses - species complex - identification - evolution - barcode - life
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.
    One stop shop: backbones trees for important phytopathogenic genera: I (2014)
    Hyde, K.D. ; Nilsson, R.H. ; Alias, S.A. ; Ariyawansa, H.A. ; Blair, J.E. ; Cai, L. ; Cock, A.W.A.M. de; Dissanayake, A.J. ; Glockling, S.L. ; Goonasekara, I.D. ; Gorczak, M. ; Hahn, M. ; Jayawardena, R.S. ; Kan, J.A.L. van; Laurence, M.H. ; Lévesque, C.A. ; Li, X. ; Liu, J.K. ; Maharachchikumbura, S.S.N. ; Manamgoda, D.S. ; Martin, F.N. ; McKenzie, E.H.C. ; McTaggart, A.R. ; Mortimer, P.E. ; Nair, P.V.R. ; Pawlowska, J. ; Rintoul, T.L. ; Shivas, R.G. ; Spies, C.F.J. ; Summerell, B.A. ; Taylor, P.W.J. ; Terhem, R.B. ; Udayanga, D. ; Vaghefi, N. ; Walther, G. ; Wilk, M. ; Wrzosek, M. ; Xu, J.C. ; Yan, J.Y. ; Zhou, N. - \ 2014
    Fungal Diversity 67 (2014). - ISSN 1560-2745 - p. 21 - 125.
    internal transcribed spacer - ribosomal dna-sequences - vegetative compatibility groups - plant-pathogenic fungi - citrus black spot - spored graminicolous colletotrichum - sporisorium-macalpinomyces complex - fragment-length-polymorphisms - botrytis-cinerea popu
    Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
    Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae
    Quaedvlieg, W. ; Binder, M. ; Groenewald, J.Z. ; Summerell, B.A. ; Carnegie, A.J. ; Burgess, T.I. ; Crous, P.W. - \ 2014
    Persoonia 33 (2014). - ISSN 0031-5850 - p. 1 - 40.
    internal transcribed spacer - mycosphaerella-spp. - sp-nov - eucalyptus leaves - gene genealogies - south-africa - leaf spots - phylogenetic reassessment - reproductive isolation - multigene phylogeny
    The Teratosphaeriaceae represents a recently established family that includes numerous saprobic, extremophilic, human opportunistic, and plant pathogenic fungi. Partial DNA sequence data of the 28S rRNA and RPB2 genes strongly support a separation of the Mycosphaerellaceae from the Teratosphaeriaceae, and also provide support for the Extremaceae and Neodevriesiaceae, two novel families including many extremophilic fungi that occur on a diversity of substrates. In addition, a multi-locus DNA sequence dataset was generated (ITS, LSU, Btub, Act, RPB2, EF-1a and Cal) to distinguish taxa in Mycosphaerella and Teratosphaeria associated with leaf disease of Eucalyptus, leading to the introduction of 23 novel genera, five species and 48 new combinations. Species are distinguished based on a polyphasic approach, combining morphological, ecological and phylogenetic species concepts, named here as the Consolidated Species Concept (CSC). From the DNA sequence data generated, we show that each one of the five coding genes tested, reliably identify most of the species present in this dataset (except species of Pseudocercospora). The ITS gene serves as a primary barcode locus as it is easily generated and has the most extensive dataset available, while either Btub, EF-1a or RPB2 provide a useful secondary barcode locus.
    Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi
    Gomes, R.R. ; Glienke, C. ; Videira, S.I.R. ; Lombard, L. ; Groenewald, J.Z. ; Crous, P.W. - \ 2013
    Persoonia 31 (2013). - ISSN 0031-5850 - p. 1 - 41.
    internal transcribed spacer - south-africa - species concepts - sp-nov - coelomycete phomopsis - foeniculum-vulgare - multigene analysis - north-america - ribosomal dna - twig dieback
    Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on diverse hosts, either as pathogens, saprobes, or as harmless endophytes. In the present study we investigated 243 isolates using multilocus DNA sequence data. Analyses of the rDNA internal transcribed spacer (ITS1, 5.8S, ITS2) region, and partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB), histone H3 (HIS) and calmodulin (CAL) genes resolved 95 clades. Fifteen new species are described, namely Diaporthe arengae, D. brasiliensis, D. endophytica, D. hongkongensis, D. inconspicua, D. infecunda, D. mayteni, D. neoarctii, D. oxe, D. paranensis, D. pseudomangiferae, D. pseudophoenicicola, D. raonikayaporum, D. schini and D. terebinthifolii. A further 14 new combinations are introduced in Diaporthe, and D. anacardii is epitypified. Although species of Diaporthe have in the past chiefly been distinguished based on host association, results of this study confirm several taxa to have wide host ranges, suggesting that they move freely among hosts, frequently co-colonising diseased or dead tissue. In contrast, some plant pathogenic and endophytic taxa appear to be strictly host specific. Given this diverse ecological behaviour among members of Diaporthe, future species descriptions lacking molecular data (at least ITS and HIS or TUB) should be strongly discouraged.
    Detection and Quantification of Leveillula taurica Growth in Pepper Leaves
    Zheng, Z. ; Nonomura, T. ; Bóka, K. ; Matsuda, Y. ; Visser, R.G.F. ; Toyoda, H. ; Kiss, L. ; Bai, Y. - \ 2013
    Phytopathology 103 (2013)6. - ISSN 0031-949X - p. 623 - 632.
    internal transcribed spacer - powdery-mildew - genus leveillula - capsicum-annuum - resistance - pcr - infections - sequences - fungi - dna
    Leveillula taurica is an obligate fungal pathogen that causes powdery mildew disease on a broad range of plants, including important crops such as pepper, tomato, eggplant, onion, cotton, and so on. The early stage of this disease is difficult to diagnose and the disease can easily spread unobserved; for example, in pepper and tomato production fields and greenhouses. The objective of this study was to develop a detection and quantification method of L. taurica biomass in pepper leaves with special regard to the early stages of infection. We monitored the development of the disease to time the infection process on the leaf surface as well as inside the pepper leaves. The initial and final steps of the infection taking place on the leaf surface were consecutively observed using a dissecting microscope and a scanning electron microscope. The development of the intercellular mycelium in the mesophyll was followed by light and transmission electron microscopy. A pair of L. taurica-specific primers was designed based on the internal transcribed spacer sequence of L. taurica and used in real-time polymerase chain reaction (PCR) assay to quantify the fungal DNA during infection. The specificity of this assay was confirmed by testing the primer pair with DNA from host plants and also from another powdery mildew species, Oidium neolycopersici, infecting tomato. A standard curve was obtained for absolute quantification of L. taurica biomass. In addition, we tested a relative quantification method by using a plant gene as reference and the obtained results were compared with the visual disease index scoring. The real-time PCR assay for L. taurica provides a valuable tool for detection and quantification of this pathogen in breeding activities as well in plant-microbe interaction studies.
    A Universal Microarray Detection Method for Identification of Multiple Phytophthora spp. Using Padlock Probes
    Sikora, K. ; Verstappen, E.C.P. ; Mendes, O. ; Schoen, C.D. ; Ristaino, J. ; Bonants, P.J.M. - \ 2012
    Phytopathology 102 (2012)6. - ISSN 0031-949X - p. 635 - 645.
    polymerase-chain-reaction - internal transcribed spacer - real-time pcr - ribosomal dna - phylogenetic-relationships - natural ecosystems - plant-pathogens - reaction assay - ramorum - quantification
    The genus Phytophthora consists of many species that cause important diseases in ornamental, agronomic, and forest ecosystems worldwide. Molecular methods have been developed for detection and identification of one or several species of Phytophthora in single or multiplex reactions. In this article, we describe a padlock probe (PLP)-based multiplex method of detection and identification for many Phytophthora spp. simultaneously. A generic TaqMan polymerase chain reaction assay, which detects all known Phytophthora spp., is conducted first, followed by a species-specific PLP ligation. A 96-well-based microarray platform with colorimetric readout is used to detect and identify the different Phytophthora spp. PLPs are long oligonucleotides containing target complementary sequence regions at both their 5' and 3' ends which can be ligated on the target into a circular molecule. The ligation is point mutation specific; therefore, closely related sequences can be differentiated. This circular molecule can then be detected on a microarray. We developed 23 PLPs to economically important Phytophthora spp. based upon internal transcribed spacer-1 sequence differences between individual Phytophthora spp. Tests on genomic DNA of many Phytophthora isolates and DNA from environmental samples showed the specificity and utility of PLPs for Phytophthora diagnostics.
    Molecular Phylogenetics, Temporal Diversification, and Principles of Evolution in the Mustard Family (Brassicaceae)
    Couvreur, T.L.P. ; Franzke, A. ; Al-Shehbaz, I.A. ; Bakker, F.T. ; Koch, M.A. ; Mummenhoff, K. - \ 2010
    Molecular Biology and Evolution 27 (2010)1. - ISSN 0737-4038 - p. 55 - 71.
    internal transcribed spacer - nuclear ribosomal dna - trnl intron sequences - arabidopsis-thaliana - maximum-likelihood - genome duplication - divergence times - allied genera - missing data - improves resolution
    Brassicaceae is an important family at both the agronomic and scientific level. The family not only inlcudes several model species, but it is also becoming an evolutionary model at the family level. However, resolving the phylogenetic relationships within the family has been problematic, and a large-scale molecular phylogeny in terms of generic sampling and number of genes is still lacking. In particular, the deeper relationships within the family, for example between the three major recognized lineages, prove particularly hard to resolve. Using a slow-evolving mitochondrial marker (nad4 intron 1), we reconstructed a comprehensive phylogeny in generic representation for the family. In addition, and because resolution was very low in previous single marker phylogenies, we adopted a supermatrix approach by concatenating all checked and reliable sequences available on GenBank as well as new sequences for a total 207 currently recognized genera and eight molecular markers representing a comprehensive coverage of all three genomes. The supermatrix was dated under an uncorrelated relaxed molecular clock using a direct fossil calibration approach. Finally, a lineage-through-time-plot and rates of diversification for the family were generated. The resulting tree, the largest in number of genera and markers sampled to date and covering the whole family in a representative way, provides important insights into the evolution of the family on a broad scale. The backbone of the tree remained largely unresolved and is interpreted as the consequence of early rapid radiation within the family. The age of the family was inferred to be 37.6 (24.2–49.4) Ma, which largely agrees with previous studies. The ages of all major lineages and tribes are also reported. Analysis of diversification suggests that Brassicaceae underwent a rapid period of diversification, after the split with the early diverging tribe Aethionemeae. Given the dates found here, the family appears to have originated under a warm and humid climate approximately 37 Ma. We suggest that the rapid radiation detected was caused by a global cooling during the Oligocene coupled with a genome duplication event. This duplication could have allowed the family to rapidly adapt to the changing climate
    Phylogenetic Signal in AFLP Data Sets
    Koopman, W.J.M. - \ 2005
    Systematic Biology 54 (2005)2. - ISSN 1063-5157 - p. 197 - 217.
    fragment length polymorphism - internal transcribed spacer - maximum-likelihood estimate - dna-dna hybridizations - sequence data - genetic-relationships - confidence-limits - arbitrary primers - difference test - wild relatives
    AFLP markers provide a potential source of phylogenetic information for molecular systematic studies. However, there are properties of restriction fragment data that limit phylogenetic interpretation of AFLPs. These are (a) possible nonindependence of fragments, (b) problems of homology assignment of fragments, (c) asymmetry in the probability of losing and gaining fragments, and (d) problems in distinguishing heterozygote from homozygote bands. In the present study, AFLP data sets of Lactuca s.l. were examined for the presence of phylogenetic signal. An indication of this signal was provided by carrying out tree length distribution skewness (g1) tests, permutation tail probability (PTP) tests, and relative apparent synapomorphy analysis (RASA). A measure of the support for internal branches in the optimal parsimony tree (MPT) was made using bootstrap, jackknife, and decay analysis. Finally, the extent of congruence in MPTs for AFLP and internal transcribed spacer (ITS)-1 data sets for the same taxa was made using the partition homogeneity test (PHT) and the Templeton test. These analytical studies suggested the presence of phylogenetic signal in the AFLP data sets, although some incongruence was found between AFLP and ITS MPTs. An extensive literature survey undertaken indicated that authors report a general congruence of AFLP and ITS tree topologies across a wide range of taxonomic groups, suggesting that the present results and conclusions have a general bearing. In these earlier studies and those for Lactuca s.l., AFLP markers have been found to be informative at somewhat lower taxonomic levels than ITS sequences. Tentative estimates are suggested for the levels of ITS sequence divergence over which AFLP profiles are likely to be phylogenetically informative. [Amplified Fragment Length Polymorphism (AFLP) markers; congruence; Dollo parsimony; g1 statistic; internal transcribed spacer (ITS) sequences; Lactuca; partition homogeneity test (PHT); phylogenetic signal.]
    Reconstructing patterns of reticulate evolution in angiosperms: what can we do?
    Vriesendorp, B. ; Bakker, F.T. - \ 2005
    Taxon 54 (2005)3. - ISSN 0040-0262 - p. 593 - 604.
    internal transcribed spacer - nuclear ribosomal dna - hybrid speciation - molecular evidence - concerted evolution - cladistic-analysis - sequence data - phylogenetic-relationships - detecting recombination - gossypium-gossypioides
    An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1
    Bakker, H.C. den; Gravendeel, B. ; Kuyper, T.W. - \ 2004
    Mycologia 96 (2004)1. - ISSN 0027-5514 - p. 102 - 118.
    internal transcribed spacer - rna secondary structure - tandem repeat - dna-sequences - fungi - elements - program - gene
    Phylogenetic relationships of the European species of Leccinum (Boletales, Boletaceae) were investigated by maximum parsimony, Bayesian and likelihood analyses of nrITS1-5.8S-ITS2 and 28S sequences. The separate gene trees inferred were largely concordant, and their combined analysis indicates that several traditional sectional and species-level taxonomic schemes are artificial. In Leccinum, the nrITS region ranges in size from 694 to 1480 bp. This extreme length heterogeneity is localized to a part of the ITS1 spacer that contains a minisatellite characterized by the repeated presence of CTATTGAAAAG and CTAATAGAAAG core sequences and mutational derivatives thereof. The number of core sequences present in the minisatellite varied from 12 to 36. Intra-individual sequence variation of the minisatellite was always smaller than between different species, indicating that concerted evolution proceeds rapidly enough to retain phylogenetic signal at the infraspecific level. In contrast, the evolutionary pattern exhibited by the major ITS1 repeat types found was homoplastic when mapped onto the species lineages inferred from the combined 5.8S-ITS2 sequences. The minisatellite therefore appears not to be useful for phylogeny reconstruction at or above the species level.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.