Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 20 / 55

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Predicting survival in dairy cattle by combining genomic breeding values and phenotypic information
    Heide, E.M.M. van der; Veerkamp, R.F. ; Pelt, M.L. van; Kamphuis, C. ; Ducro, B.J. - \ 2020
    Journal of Dairy Science 103 (2020)1. - ISSN 0022-0302 - p. 556 - 571.
    dairy cow - individual prediction - longevity - survival

    Advances in technology and improved data collection have increased the availability of genomic estimated breeding values (gEBV) and phenotypic information on dairy farms. This information could be used for the prediction of complex traits such as survival, which can in turn be used in replacement heifer management. In this study, we investigated which gEBV and phenotypic variables are of use in the prediction of survival. Survival was defined as survival to second lactation, plus 2 wk, a binary trait. A data set was obtained of 6,847 heifers that were all genotyped at birth. Each heifer had 50 gEBV and up to 62 phenotypic variables that became gradually available over time. Stepwise variable selection on 70% of the data was used to create multiple regression models to predict survival with data available at 5 decision moments: distinct points in the life of a heifer at which new phenotypic information becomes available. The remaining 30% of the data were kept apart to investigate predictive performance of the models on independent data. A combination of gEBV and phenotypic variables always resulted in the model with the highest Akaike information criterion value. The gEBV selected were longevity, feet and leg score, exterior score, udder score, and udder health score. Phenotypic variables on fertility, age at first calving, and milk quantity were important once available. It was impossible to predict individual survival accurately, but the mean predicted probability of survival of the surviving heifers was always higher than the mean predicted probability of the nonsurviving group (difference ranged from 0.014 to 0.028). The model obtained 2.0 to 3.0% more surviving heifers when the highest scoring 50% of heifers were selected compared with randomly selected heifers. Combining phenotypic information and gEBV always resulted in the highest scoring models for the prediction of survival, and especially improved early predictive performance. By selecting the heifers with the highest predicted probability of survival, increased survival could be realized at the population level in practice.

    Data from: No gains for bigger brains: functional and neuroanatomical consequences of relative brain size in a parasitic wasp
    Woude, E. van der; Groothuis, J. ; Smid, H.M. - \ 2019
    artificial selection - trade-offs - constraints - insects - host-parasite interaction - bidirectional artificial selection - brain-size - appetitive olfactory conditioning - brain scaling - parasitic wasp - parasitoid - longevity - Nasonia vitripennis
    Heritable genetic variation in relative brain size can underlie the relationship between brain performance and the relative size of the brain. We used bidirectional artificial selection to study the consequences of genetic variation in relative brain size on brain morphology, cognition and longevity in Nasonia vitripennis parasitoid wasps. Our results show a robust change in relative brain size after 26 generations of selection and 6 generations of relaxation. Total average neuropil volume of the brain was 16% larger in wasps selected for relatively large brains than in wasps selected for relatively small brains, whereas the body length of the large-brained wasps was smaller. Furthermore, the relative volume of the antennal lobes was larger in wasps with relatively large brains. Relative brain size did not influence olfactory memory retention, whereas wasps that were selected for larger relative brain size had a shorter longevity, which was even further reduced after a learning experience. These effects of genetic variation on neuropil composition and memory retention are different from previously described effects of phenotypic plasticity in absolute brain size. In conclusion, having relatively large brains may be costly for N. vitripennis, whereas no cognitive benefits were recorded.
    Exploiting whole genome sequence variants in cattle breeding : Unraveling the distribution of genetic variants and role of rare variants in genomic evaluation
    Zhang, Qianqian - \ 2017
    Wageningen University. Promotor(en): H. Bovenhuis; M.S. Lund, co-promotor(en): G. Sahana; M. Calus; B. Guldbrandtsen. - Wageningen : Wageningen University - ISBN 9788793643147 - 249
    cattle - genomes - genetic variation - inbreeding - homozygosity - longevity - quantitative traits - animal breeding - animal genetics - rundvee - genomen - genetische variatie - inteelt - homozygotie - gebruiksduur - kwantitatieve kenmerken - dierveredeling - diergenetica

    The availability of whole genome sequence data enables to better explore the genetic mechanisms underlying different quantitative traits that are targeted in animal breeding. This thesis presents different strategies and perspectives on utilization of whole genome sequence variants in cattle breeding. Using whole genome sequence variants, I show the genetic variation, recent and ancient inbreeding, and genome-wide pattern of introgression across the demographic and breeding history in different cattle populations. Using the latest genomic tools, I demonstrate that recent inbreeding can accurately be estimated by runs of homozygosity (ROH). This can further be utilized in breeding programs to control inbreeding in breeding programs. In chapter 2 and 4, by in-depth genomic analysis on whole genome sequence data, I demonstrate that the distribution of functional genetic variants in ROH regions and introgressed haplotypes was shaped by recent selective breeding in cattle populations. The contribution of whole genome sequence variants to the phenotypic variation partly depends on their allele frequencies. Common variants associated with different traits have been identified and explain a considerable proportion of the genetic variance. For example, common variants from whole genome sequence associated with longevity have been identified in chapter 5. However, the identified common variants cannot explain the full genetic variance, and rare variants might play an important role here. Rare variants may account for a large proportion of the whole genome sequence variants, but are often ignored in genomic evaluation, partly because of difficulty to identify associations between rare variants and phenotypes. I compared the powers of different gene-based association mapping methods that combine the rare variants within a gene using a simulation study. Those gene- based methods had a higher power for mapping rare variants compared with mixed linear models applying single marker tests that are commonly used for common variants. Moreover, I explored the role of rare and low-frequency variants in the variation of different complex traits and their impact on genomic prediction reliability. Rare and low-frequency variants contributed relatively more to variation for health-related traits than production traits, reflecting the potential of improving prediction reliability using rare and low-frequency variants for health-related traits. However, in practice, only marginal improvement was observed using selected rare and low-frequency variants when combined with 50k SNP genotype data on the reliability of genomic prediction for fertility, longevity and health traits. A simulation study did show that reliability of genomic prediction could be improved provided that causal rare and low-frequency variants affecting a trait are known.

    Genetic improvement of longevity in dairy cows
    Pelt, Mathijs van - \ 2017
    Wageningen University. Promotor(en): Roel Veerkamp, co-promotor(en): T.H.E. Meuwissen. - Wageningen : Wageningen University - ISBN 9789463430821 - 188
    dairy cows - longevity - genetic improvement - breeding value - genetic analysis - survival - animal models - animal genetics - melkkoeien - gebruiksduur - genetische verbetering - fokwaarde - genetische analyse - overleving - diermodellen - diergenetica

    Improving longevity helps to increase the profit of the farmer, and it is seen as an important measure of improved animal welfare and sustainability of the sector. Breeding values for longevity have been published since in 1999 in the Netherlands. For AI-companies and farmers it is necessary that breeding values are accurately estimated and will remain stable for the rest of life. However, current breeding values for longevity of bulls seem to fluctuate more than expected. The main aim of this thesis was to revisit the genetics of longevity and develop a genetic evaluation model for longevity, where breeding values reflect the true breeding value quicker during early life and therefore breeding values become more stable. Genetic parameters were estimated for survival up to 72 months after first calving with a random regression model (RRM). Survival rates were higher in early life than later in life (99 vs. 95%). Survival was genetically not the same trait across the entire lifespan, because genetic correlations differ from unity between different time intervals, especially when intervals were further apart. Survival in the first year after first calving was investigated more in depth. Survival of heifers has improved considerably in the past 25 years, initially due to the focus on a high milk production. More recently, the importance of a high milk production for survival has been reduced. Therefore functional survival was defined as survival adjusted for within-herd production level. For survival the optimum age at first calving was around 24 months, whereas for functional survival calving before 24 months resulted in a higher survival. Over years, genetic correlations between survival in different 5-yr intervals were below unity, whereas for functional survival genetic correlations did not indicate that survival changed over years. This suggested that a genetic evaluation using historical data should analyze functional survival rather than survival. A new genetic evaluation system for longevity was developed based on a RRM analyzing functional survival. Based on the correlation between the first breeding value of a bull and his later breeding values, the ranking of bulls was shown to be more stable for RRM than the current genetic evaluation. Bias in breeding value was observed, mainly for bulls with a large proportion of living daughters. Adjusting for within-herd production level reduced this bias in the breeding values greatly. Before implementing this new model for genetic evaluation, the cause of this bias needs to be further investigated.

    Genetic changes of survival traits over the past 25 yr in Dutch dairy cattle
    Pelt, M.L. van; Ducrocq, V. ; Jong, G. de; Calus, M.P.L. ; Veerkamp, R.F. - \ 2016
    Journal of Dairy Science 99 (2016)12. - ISSN 0022-0302 - p. 9810 - 9819.
    genetic correlation - longevity - survival

    Genetic correlations and heritabilities for survival were investigated over a period of 25 yr to evaluate if survival in first lactation has become a different trait and if this is affected by adjusting for production level. Survival after first calving until 12 mo after calving (surv_12mo) and survival of first lactation (surv_1st_lac) were analyzed in Dutch black-and-white cows. The data set contained 1,108,745 animals for surv_12mo and 1,062,276 animals for surv_1st_lac, with first calving between 1989 and 2013. The trait survival as recorded over 25 yr was split in five 5-yr intervals to enable a multitrait analysis. Bivariate models using subsets of the full data set and multitrait and autoregressive models using the full data set were used. Survival and functional survival were analyzed. Functional survival was defined as survival adjusted for within-herd production level for 305-d yield of combined kilograms of fat and protein. Mean survival increased over time, whereas genetic variances and heritability decreased. Bivariate models yielded large standard errors on genetic correlations due to poor connectedness between the extreme 5-yr intervals. The more parsimonious models using the full data set gave nonunity genetic correlations. Genetic correlations for survival were below 0.90 between intervals separated by 1 or more 5-yr intervals. Genetic correlations for functional survival did not indicate that definition of survival changed (≥0.90). The difference in genetic correlations between survival and functional survival is likely explained by lower emphasis of dairy farmers on culling in first lactation for low yield in more recent years. This suggests that genetic evaluation for longevity using historical data should analyze functional survival rather than survival.

    Changes in the genetic level and the effects of age at first calving and milk production on survival during the first lactation over the last 25 years
    Pelt, M.L. van; Jong, G. de; Veerkamp, R.F. - \ 2016
    Animal 10 (2016)12. - ISSN 1751-7311 - p. 2043 - 2050.
    age at first calving - dairy cattle - longevity - survival - within-herd production level

    Survival during the first year after first calving was investigated over the last 25 years, 1989–2013, as well as how the association of survival with season of calving, age at first calving (AFC) and within-herd production level has changed over that period. The data set contained 1 108 745 Dutch black-and-white cows in 2185 herds. Linear models were used to estimate (1) effect of year and season and their interaction and (2) effect of AFC, within-herd production level, and 5-year intervals and their two-way interactions, and the genetic trend. All models contained AFC and percentage of Holstein Friesian as a fixed effect, and herd-year-season, sire and maternal grandsire as random effects. Survival and functional survival were analysed. Functional survival was defined as survival adjusted for within-herd production level. Survival rate increased by 8% up to 92% in the last 25 years. When accounting for pedigree, survival showed no improvement up to 1999, but improved since then. Genetically, survival increased 3% to 4% but functional survival did not increase over the 25 years. We found an interesting difference between the genetic trends for survival and functional survival for bulls born between 1985 and 1999, where the trend for survival was still increasing, but was negative for functional survival. Since 1999, genetic trend picked up again for both survival and functional survival. AFC, season of calving and within-herd production level affected survival. Survival rate decreased 0.6%/month for survival and 1.5% for functional survival between AFC of 24 and 32 months. Calving in summer resulted in 2.0% higher survival than calving in winter. Within herd, low-producing cows had a lower survival rate than high-producing cows. However, these effects became less important during the recent years. Based on survival optimum AFC is around 24 months, but based on functional survival it is better to have an AFC

    Antibodies and longevity of dairy cattle : genetic analysis
    Klerk, B. de - \ 2016
    Wageningen University. Promotor(en): Johan van Arendonk, co-promotor(en): Jan van der Poel; Bart Ducro. - Wageningen : Wageningen University - ISBN 9789462577589 - 134
    dairy cattle - dairy cows - antibodies - longevity - genetic analysis - breeding value - genomes - genetic improvement - animal genetics - melkvee - melkkoeien - antilichamen - gebruiksduur - genetische analyse - fokwaarde - genomen - genetische verbetering - diergenetica

    The dairy sector has a big impact on food production for the growing world population and contributes substantially to the world economy. In order to produce food in a sustainable way, dairy cows need to be able to produce milk without problems and as long as possible. Therefore, breeding programs focuses on improvement of important traits for dairy cows. In order to improve desirable traits and obtain genetic gain there is a constant need for optimization of breeding programs and search for useful parameters to include within breeding programs. Over the last several decades, breeding in dairy cattle mainly focused on production and fertility traits, with less emphasis on health traits. Health problems, however, can cause substantial economic losses to the dairy industry. The economic losses, together with the rising awareness of animal welfare, increased herd size, and less attention for individual animals, have led to an increased need to focus more on health traits. Longevity is strongly related to disease resistance, since a more healthy cow will live a longer productive life (longevity). The identification of biomarkers and the detection of genes controlling health and longevity, would not only greatly enhance the understanding of such traits but also offer the opportunity to improve breeding schemes. The objectives of this thesis therefore were 1) to find an easy measurable disease resistance related biomarker in dairy cows, 2) identify the relation between antibodies and longevity, 3) identify genomic regions that are involved with antibody production/expression. In this thesis antibodies are investigated as parameter for longevity. Antibodies might be a novel parameter that enables selection of cows with an improved ability to stay healthy and to remain productive over a longer period of time. In this thesis antibodies bindiging the naive antigen keyhole limpet hemocyanin (KLH) were assumed to be natural antibodies. Antibodies binding bacteria-derived antigens lipoteichoic acid (LTA), lipopolysaccharide (LPS) and peptidoglycan (PGN) were assumed to be specific antibodies. In chapter 2 it was shown that levels of antibodies are heritable (up to h2 = 0.23). Additionally, antibody levels measured in milk and blood are genetically highly correlated (± 0.80) for the two studied isotypes (IgG and IgM). On the other hand, phenotypically, natural antibodies (from both IgG and IgM isotype) measured in milk cannot be interpreted as the same trait (phenotypic correlation = ± 0.40). In chapter 3 and 4 it was shown that levels of antibodies (both natural-and specific antibodies) showed a negative relation with longevity: first lactation cows with low IgM or IgG levels were found to have a longer productive life. When using estimated breeding values for longevity, only a significant relation was found between natural antibody level (IgM binding KLH) and longevity. Lastly chapter 5 reports on a genome-wide-association study (GWAS), to detect genes contributing to genetic variation in natural antibody level. For natural antibody isotype IgG, genomic regions with a significant association were found on chromosome 21 (BTA). These regions included genes have impact on in isotype class switching (from IgM to IgG). The gained knowledge on relations between antibodies and longevity and the gained insight on genes responsible for natural antibodies level make antibodies potential interesting biomarkers for longevity.

    Premature culling of production animals; ethical questions related to killing animals in food production
    Bruijnis, M.R.N. ; Meijboom, F.L.B. ; Stassen, E.N. - \ 2016
    In: The end of animal life: a start for ethical debate / E.N., Stassen, F.L.B., Meijboom, Wageningen, the Netherlands : Wageningen Academic Publishers - ISBN 9789086862603 - p. 149 - 166.
    animal welfare - longevity - production animals
    The aim of this chapter is to analyse the importance of longevity in relation to the welfare of production animals. I hypothesize that the concept of longevity helps to support the moral intuition that premature culling of animals is a moral wrong. The analysis shows that the interpretation of the concept of animal welfare is important for decisions on whether or not to cull animals, but also for the measures that should be taken to prevent premature culling. This is illustrated by two examples in animal production, one example relating to dairy cattle and the other to breeding sows. These two types of farming have in common that in these practices animals are necessary to produce products, yet this production does not require– the animal itself to be killed. My proposal is to accept the view on animal welfare according to which longevity is accepted as an independent moral argument. Acceptance of this view substantiates the intuition that premature culling of animals is a moral wrong, because it shows that we have additional reasons to give the interests of animals more weight. In order to respect this view, some common practices in animal farming will become the subject of debate, as illustrated in the two cases.
    Data from: Sex-specific effects of natural and sexual selection on the evolution of life span and ageing in Drosophila simulans
    Archer, C.R. ; Duffy, E. ; Hosken, D.J. ; Mokkonen, M. ; Okada, K. ; Oku, K. ; Sharma, M.D. ; Hunt, J. - \ 2015
    University of Exeter
    senescence - drosophila simulans - Experimental evolution - sexual conflict - evolutionary response - ageing rates - longevity
    1. Variation in the strength of age-dependent natural selection shapes differences in ageing rates across species and populations. Likewise, sexual selection can promote divergent patterns of senescence across the sexes. However, the effects of these processes on the evolution of ageing have largely been considered independently, and interactions between them are poorly understood. 2. We use experimental evolution to investigate how natural and sexual selection affect life span and ageing in Drosophila simulans. 3. Replicate populations were evolved under lifetime monogamy (relaxed sexual selection) or lifetime polyandry (elevated sexual selection) and at one of two temperatures, 25 °C (relaxed natural selection) or 27 °C (enhanced natural selection), in a fully factorial design. We measured longevity in 150 individually housed flies taken from each of three replicate populations per selection regime. 4. We found that natural and sexual selection affected the evolution of life span via sex-specific effects on different ageing parameters (ageing rate vs. baseline mortality): natural selection reduced the rate of ageing in both sexes but increased male baseline mortality, while sexual selection elevated baseline mortality in both sexes but particularly in males. 5. This means that sexual and natural selection interacted to reduce male life span but acted on female life span by independently affecting particular ageing parameters. Sex-specific effects of sexual and natural selection may help explain the diverse patterns of ageing seen in nature but complicate predictions about how ageing and life span evolve across the sexes.
    A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds
    Dias Costa, M.C. ; Righetti, K. ; Nijveen, H. ; Yazdanpanah, F. ; Ligterink, W. ; Buitink, J. ; Hilhorst, H.W.M. - \ 2015
    Planta 242 (2015)2. - ISSN 0032-0935 - p. 435 - 449.
    medicago-truncatula seeds - transcription factors - expression data - abiotic stress - dormancy - drought - identification - maturation - longevity - software
    Main conclusion During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.
    Effect of antimicrobial compounds on cut Gerbera flowers: Poor relation between stem bending and numbers of bacteria in the vase water
    Witte, Y. van de; Harkema, H. ; Doorn, W.G. van - \ 2014
    Postharvest Biology and Technology 91 (2014). - ISSN 0925-5214 - p. 78 - 83.
    jamesonii flowers - essential oils - rose flowers - membranes - longevity - stress - sugars - plants - life - acid
    Gerbera flowers (Gerbera jamesonii) often show stem bending. In four cultivars (Tamara, Liesbeth, Cora, and Mickey), we tested the effects on bending of antimicrobial compounds (chlorine bleach, a slow release chlorine compound, 8-hydroxyquinoline citrate [HQC], silver nitrate, carvacrol and thymol), some combined with sugars. At concentrations used for other cut flowers, inclusion in the vase solution of several of the antimicrobial compounds delayed bending, had no effect, or hastened bending. Hastening of bending was found at higher concentrations. It was accompanied with visible damage on the stem ends. Results with HQC indicated high toxicity as it did not delay bending at any of the concentration tested (100-400 mg L-1). At 200 mg L-1 HQC induced growth of bacteria that were not found in the controls. The number of bacteria in the vase water showed a low correlation with bending. Visible toxicity on the stem surface was often associated with a high bacteria count. However, at relatively high concentrations of the antimicrobial compounds stem bending was associated with a low count. This indicated an effect other than bacteria. Water uptake was low in stems that bent early. It is hypothesized that material from dead stem cells resulted in a xylem blockage which led to early bending. Sucrose at 15 g L-1 in combination with an antimicrobial compound (slow release chlorine, HQC) resulted in the absence of stem damage and produced much less bending than the same concentration of the antimicrobial compounds alone. Sucrose apparently counteracted the toxic effects of the antimicrobial chemicals. (C) 2014 Published by Elsevier B.V.
    Combating inflammaging through a Mediterranean whole diet approach: The NU-AGE project's conceptual framework and design
    Santoro, A. ; Pini, E. ; Scurti, M. ; Palmas, G. ; Berendsen, A.M. ; Brzozowska, A.M. ; Groot, C.P.G.M. de; Feskens, E.J.M. ; Vos, W.M. de - \ 2014
    Mechanisms of Ageing and Development 136-137 (2014). - ISSN 0047-6374 - p. 3 - 13.
    cd8(+) t-cells - style diet - cellular senescence - older-adults - longevity - immunosenescence - phenotype - frailty - system - muscle
    The development of a chronic, low grade, inflammatory status named “inflammaging” is a major characteristic of ageing, which plays a critical role in the pathogenesis of age-related diseases. Inflammaging is both local and systemic, and a variety of organs and systems contribute inflammatory stimuli that accumulate lifelong. The NU-AGE rationale is that a one year Mediterranean whole diet (considered by UNESCO a heritage of humanity), newly designed to meet the nutritional needs of the elderly, will reduce inflammaging in fully characterized subjects aged 65–79 years of age, and will have systemic beneficial effects on health status (physical and cognitive). Before and after the dietary intervention a comprehensive set of analyses, including omics (transcriptomics, epigenetics, metabolomics and metagenomics) will be performed to identify the underpinning molecular mechanisms. NU-AGE will set up a comprehensive database as a tool for a systems biology approach to inflammaging and nutrition. NU-AGE is highly interdisciplinary, includes leading research centres in Europe on nutrition and ageing, and is complemented by EU multinational food industries and SMEs, interested in the production of functional and enriched/advanced traditional food tailored for the elderly market, and European Federations targeting policy makers and major stakeholders, from consumers to EU Food & Drink Industries.
    Preservation of seed viability during 25 years of storage under standard genebank conditions
    Treuren, R. van; Groot, E.C. de; Hintum, T.J.L. van - \ 2013
    Genetic Resources and Crop Evolution 60 (2013)4. - ISSN 0925-9864 - p. 1407 - 1421.
    desiccation-tolerance - longevity - brassicaceae - germination - maturity
    Maintaining sufficient viability is critical to the sustainability of ex situ conserved seed collections. For this reason, accessions are regenerated when viability falls below a predefined threshold. Viability is monitored by determining the germination ability of accessions at predefined time intervals. Optimizing the frequency of these germination tests, in order to avoid waste of resources, is hampered by the scarce availability of data about seed longevity, particularly for material maintained under genebank conditions. Here we report on the analysis of nearly 40,000 germination test results collected for a wide range of crop species over a 25-years period by the centre for genetic resources, the Netherlands (CGN), where seeds of genebank accessions are dried to 3–7 % moisture content and stored for the long term under near-vacuum in aluminium foil bags at -20 °C. The results indicate that seed viability is well maintained for the large majority of seed lots during the first 25 years after regeneration as only 3.3 % of the monitoring tests revealed below-threshold germination values. It is argued that the majority of these sub-standard seed lots are due to other causes than seed ageing, including dormancy problems and estimation error in germination testing. For material, maintained under the seed management procedures and storage conditions practiced by CGN, it is therefore recommended to delay the first germination monitoring tests to 25 years after regeneration.
    Foot disorders in dairy cattle : a socio-economic approach to improve dairy cow welfare
    Bruijnis, M.R.N. - \ 2012
    Wageningen University. Promotor(en): Elsbeth Stassen, co-promotor(en): Henk Hogeveen. - S.l. : s.n. - ISBN 9789461733924 - 174
    melkvee - melkkoeien - voetziekten - dierenwelzijn - diergezondheid - sociale economie - simulatiemodellen - verliezen - gebruiksduur - melkveehouderij - dairy cattle - dairy cows - foot diseases - animal welfare - animal health - socioeconomics - simulation models - losses - longevity - dairy farming
    Klauwaandoeningen en de kreupelheid die daardoor ontstaat zijn een belangrijk probleem in de huidige melkveehouderij. Op basis van de incidentie, duur en ernst van klauwaandoeningen, worden ze aangemerkt als het belangrijkste welzijnsprobleem. Ondanks dat er veel kennis is over de klauwaandoeningen en de risicofactoren, is het probleem nog niet afgenomen. Bovendien onderschatten melkveehouders de grootte van het probleem van klauwaandoeningen, evenals de relatie met kreupelheid.
    Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions
    Groot, S.P.C. ; Surki, A.A. ; Vos, R.C.H. de; Kodde, J. - \ 2012
    Annals of Botany 110 (2012)6. - ISSN 0305-7364 - p. 1149 - 1159.
    controlled deterioration - moisture-content - vitamin-e - gaseous environment - digitalis-purpurea - lipid-peroxidation - water-content - barley seeds - longevity - germination
    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice
    Genetic variation for stress-response hormesis in C. elegans lifespan
    Rodriguez Sanchez, M. ; Snoek, L.B. ; Riksen, J.A.G. ; Bevers, R.P.J. ; Kammenga, J.E. - \ 2012
    Experimental Gerontology 47 (2012)8. - ISSN 0531-5565 - p. 581 - 587.
    quantitative trait loci - genotype-environment interactions - nematode caenorhabditis-elegans - long-lived mutant - drosophila-melanogaster - heat-shock - history traits - natural variation - longevity - resistance
    Increased lifespan can be associated with greater resistance to many different stressors, most notably thermal stress. Such hormetic effects have also been found in C. elegans where short-term exposure to heat lengthens the lifespan. Genetic investigations have been carried out using mutation perturbations in a single genotype, the wild type Bristol N2. Yet, induced mutations do not yield insight regarding the natural genetic variation of thermal tolerance and lifespan. We investigated the genetic variation of heat-shock recovery, i.e. hormetic effects on lifespan and associated quantitative trait loci (QTL) in C. elegans. Heat-shock resulted in an 18% lifespan increase in wild type CB4856 whereas N2 did not show a lifespan elongation. Using recombinant inbred lines (RILs) derived from a cross between wild types N2 and CB4856 we found natural variation in stress-response hormesis in lifespan. Approx. 28% of the RILs displayed a hormesis effect in lifespan. We did not find any hormesis effects for total offspring. Across the RILs there was no relation between lifespan and offspring. The ability to recover from heat-shock mapped to a significant QTL on chromosome II which overlapped with a QTL for offspring under heat-shock conditions. The QTL was confirmed by introgressing relatively small CB4856 regions into chromosome II of N2. Our observations show that there is natural variation in hormetic effects on C. elegans lifespan for heat-shock and that this variation is genetically determined.
    Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation
    Dooremalen, C. van; Gerritsen, L.J.M. ; Cornelissen, B. ; Steen, J.J.M. van der; Langevelde, F. van; Blacquiere, T. - \ 2012
    PLoS ONE 7 (2012)4. - ISSN 1932-6203
    apis-mellifera colonies - jacobsoni oud - oxalic-acid - life-span - population - acari - hymenoptera - longevity - physiology - declines
    Background: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings: Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance: This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter.
    How honey bees of successive age classes are distributed over a one storey, ten frames hive
    Steen, J.J.M. van der; Cornelissen, B. ; Donders, J.N.L.C. ; Blacquière, T. ; Dooremalen, C. van - \ 2012
    Journal of Apicultural Research 51 (2012)2. - ISSN 0021-8839 - p. 174 - 178.
    worker honeybees - apis-mellifera - longevity - products - length - life
    In honey bee studies focusing on physiology, disease diagnosis or bio indication, bees are sampled from the colony. This raises the question of where in the colony samples must be taken from for specific study objectives. In this study we recorded where bees of known age are found in the hive. We recorded in a single brood box with ten frames in August that the mean proportion of bees of one (41%), two (23%), three (17%), four (11%) and five (8%) week old bees did not differ between frames. Additionally we found that there was a significant mortality of young bees in the first week after emergence. This may be partly due to the study set up but is also a natural phenomenon
    Changed gene expression for candidate ageing genes in long-lived Bicyclus anynana butterflies
    Pijpe, J. ; Pul, N. ; Duijn, S. van; Brakefield, P.M. ; Zwaan, B.J. - \ 2011
    Experimental Gerontology 46 (2011)6. - ISSN 0531-5565 - p. 426 - 434.
    quantitative trait loci - extend life-span - drosophila-melanogaster - oxidative damage - caenorhabditis-elegans - starvation resistance - adaptive evolution - stress resistance - natural variation - longevity
    Candidate genes for the regulation of lifespan have emerged from studies that use mutants and genetically manipulated model organisms. However, it is rarely addressed whether these genes contribute to lifespan variation in populations of these species that capture natural standing genetic variation. Here, we explore expression variation in three candidate ageing genes, Indy, sod2, and catalase, in Bicyclus anynana, a butterfly with well understood ecology. We used lines established from natural populations and artificially selected for increased adult starvation resistance. They show a considerable increase in adult lifespan under both starvation and optimal food conditions. We measured adult butterflies of various ages, under a range of optimal and starvation diets, from two selected populations and one unselected control population. In all lines, Indy and catalase are up-regulated in response to starvation while this is not evident for sod2. Under starvation, Indy and catalase are up-regulated in, while this is not evident for sod2. Under optimal food conditions, Indy is down-regulated at a later age, with Indy expression showing relatively high inter-individual variation. We find differences between the selected lines and the unselected line. Under starvation conditions, expression is higher for catalase in one, and for sod2 in both selected lines. Importantly, sod2 expression is also higher in the selected populations under optimal food conditions. We conclude that sod2, but not Indy, is involved in the response to artificial selection for increased starvation resistance. The role of catalase is less clear because of the differences between the two selected lines. Moreover, sod2 appears to be a candidate gene that underpins the genetic correlation between starvation resistance and longevity. Our study indicates that some, but not all, genes identified through mutant screens in other organisms may underpin standing genetic variation for ageing-related traits in stocks of Bicyclus butterflies established from natural populations. Clearly, this needs to be investigated in other organisms as well, especially in the organisms to which mutants screens were applied. This information will narrow down the list of genes that underpin variation in lifespan and ageing in extant populations of organisms, and which may serve as candidate genes in humans
    Purple witchweed (Striga hermonthica) germination and seedbank depletion under different crops, fallow, and bare soil
    Mourik, T.A. van; Stomph, T.J. ; Murdoch, A.J. - \ 2011
    Weed Biology and Management 11 (2011)2. - ISSN 1444-6162 - p. 100 - 110.
    long-term management - strategy evaluation - population-model - longevity - sorghum - banks - seeds
    Seedbank density is an important aspect that determines the amount of damage that the parasitic weed, purple witchweed (Striga hermonthica; hereafter, called “Striga”), causes on its crop hosts. The seedbank depletion of Striga was measured in Mali and Niger during the 2004 rainy season under the host crops, pearl millet and sorghum, the non-host crops, cowpea and sesame, the intercrops of pearl millet or sorghum with cowpea or sesame, and fallow with or without weeding. Two methods were used and compared; namely, a seed bag method and a soil-sampling method. The fate of the seeds was assessed by a seed press test. Seed germination, as determined by the presence of empty seed coats, contributed most to the seedbank depletion of Striga under a variety of crop covers and fallow. The highest seedbank depletion was found under the monocultures of the host crops. The intercrops of the host and non-host crops caused less seedbank depletion, followed by the monocultures of the non-host crops, fallow, and bare soil. The seed bag method and the soil-sampling method yielded similar percentages of seedbank depletion, while the former allowed for distinguishing between the germinated and diseased seeds. The results suggest that, although all the tested crop species can cause the seed germination and seedbank depletion of Striga, management by using host cereal crops causes the highest amount of germination and has the highest potential to deplete the soil seed bank, provided that seed production is prevented
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.