Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 20 / 81

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    In vivo 1H NMR methods to study dynamics of chloroplast water and thylakoid membrane lipids in leaves and in photosynthetic microorganisms
    Pagadala, Shanthi - \ 2017
    Wageningen University. Promotor(en): H. van Amerongen, co-promotor(en): H. van As. - Wageningen : Wageningen University - ISBN 9789463431569 - 130
    cell membranes - membranes - chloroplasts - thylakoids - photosynthesis - in vivo experimentation - stress conditions - stress - proteins - lipids - mobility - dynamics - celmembranen - membranen - chloroplasten - thylakoïden - fotosynthese - in vivo experimenten - stress omstandigheden - stress - eiwitten - lipiden - mobiliteit - dynamica

    Dynamics of thylakoid membranes and mobility of pigment-protein complexes therein are essential for survival of photosynthetic organisms under changing environmental conditions. The published approaches to probe mobility of the thylakoid membrane lipids and protein complexes are either dependent on the use of external labels or are used only for in vitro studies. Here, we present non-invasive 1H NMR methods (DOSY and DRCOSY) to study dynamics of water in chloroplasts, lipids in oil bodies and in thylakoid membranes and pigment-protein complexes under complete in vivo conditions in leaf disks of F. benjamina and A. platanoides and in suspensions of the green alga Chlamydomonas reinhardtii and blue-green alga Synechocystissp.PCC 6803.

    In leaf disks of Ficus benjamina and Acer platanoides, water in chloroplasts could be clearly discriminated from other pools. Both water in chloroplasts, and water in vacuoles of palisade and spongy cells showed resonances in the high field part of the spectra (with respect to pure water), in contrast to what has been reported in literature. Subepidermal cells (present only in F. benjamina but not in A. platanoides) may act as a water storage, buffer pool during drought. This pool prevented the fast loss of water from the chloroplasts. Nutrient stress and excess salt stress resulted in accumulated lipid bodies and in striking differences in the dynamics and spectra/composition of the different components. T2 values of the different components are compared with those observed in suspensions of Synechocystissp.PCC 6803. The differences in membrane composition (ratio of the different membrane lipids) were clearly observed in the DANS of the oil bodies and the (thylakoid) membranes, but the diffusion coefficients were quite comparable. Also the DANS of the component that is assigned to the pigment-protein complexes are quite different, reflecting the differed composition. The diffusion coefficients of this component in isolated spinach thylakoids and in C. reinhardtii are very comparable, but about a factor of 10 lower with respect to that of Synechocystis at short diffusion times. The dynamics of these complexes in these systems are thus quite different.

    Thermo-responsive block copolymers : synthesis, self-assembly and membrane development
    Mocan Cetintas, Merve - \ 2017
    Wageningen University. Promotor(en): F.A.M. Leermakers, co-promotor(en): M.M.G. Kamperman. - Wageningen : Wageningen University - ISBN 9789463431583 - 177
    polymer chemistry - polymers - membranes - synthesis - self assembly - thermal properties - polymeerchemie - polymeren - membranen - synthese - zelf-assemblage - thermische eigenschappen

    Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to fabricate thermo-responsive iso- and nanoporous membranes from BCPs.

    First, we optimized the synthesis of a thermo-responsive BCP, i.e. polystyrene-poly(N-isopropyl acrylamide) (PS-PNIPAM) with desired properties using controlled/living polymerization methods. We fabricated membranes using self-assembly and non-solvent induced phase separation (SNIPS) method. The membranes were nanoporous, thermo-responsive and exhibited an interconnected worm-like surface.

    We investigated the self-assembly behavior of BCPs using both theoretical and experimental approaches. The theoretical investigation involves self-consistent field modelling of Scheutjens and Fleer (SF-SCF) which is used for the first time for BCP self-assembly phenomena. Using SF-SCF, first, we found a chain length dependence on the critical point of BCP phase diagram which confirms well with the reported literature. Second, we worked on the stability of the common mesophases (e.g. single and double gyroids, double diamond, hexagonally perforated lamellae) that is observed between hexagonally ordered cylindrical (HEX) and lamellar (LAM) phases; at chain length, =300 and at intermediate segregation regime, =30. Among the mentioned mesophases double gyroid was the only phase dominant over HEX and LAM phases. At strong segregation regime of =120 with the same chain length, double gyroid was found as a metastable phase.

    The experimental approach of the BCP self-assembly was performed by solvent annealing of BCP thin films. For annealing, common laboratory solvents e.g. methanol, tetrahydrofuran, toluene were used with various ratios to tune the selectivity of the solvent mixtures to the blocks in the copolymer. A lamellar forming triblock copolymer using the solvent mixtures methanol: THF (v:v) 1:2 or methanol: toluene (v:v) 1:1 resulted in HEX phase. In contrast, no sustained long-range order was found when only one type of solvent was used.

    Next, we optimized the membrane fabrication parameters to obtain membranes with an isoporous surface. We investigated the effect of solvent selectivity, evaporation time and polymer concentration. For PS selective solvents, membranes exhibited a disordered surface whereas PNIPAM selective solvents resulted in membranes with an isoporous surface. For a large parameter space, isoporous membranes were attained which is not common for SNIPS method. Permeability tests at various temperatures proved fully reversible thermo-responsive behavior of these membranes.

    Finally, we concluded our work with future recommendations to obtain block copolymer membranes that have improved properties and suggested tests that will prove membranes’ suitability for industrial applications.

    Tuning for light and more : engineering phototrophy and membrane proteins in Escherichia coli
    Claassens, Nicolaas J.H.P. - \ 2017
    Wageningen University. Promotor(en): John van der Oost; Willem de Vos, co-promotor(en): Vitor Martins dos Santos. - Wageningen : Wageningen University - ISBN 9789463430920 - 328
    escherichia coli - phototropism - membranes - proteins - light - photosystem i - gene expression - escherichia coli - fototropie - membranen - eiwitten - licht - fotosysteem i - genexpressie

    The application of microbial and plant photosynthesis for biobased production on the one hand has a huge potential but on the other hand photosynthesis has serious limitations regarding its efficiency. Hence, studying both fundamental features of photosynthetic processes and engineering of photosystems is of paramount interest, exploring the engineering of photosystems is the overarching aim of this thesis. As described in Chapter 1, natural photosystems may be modified or transplanted to allow for more efficient conversion of solar light energy into biochemical energy. Hereto ambitious proposals to engineer photosystems have been made, and to realize those endeavors the disciplines of synthetic and systems biology are required. To explore how to apply and improve those disciplines hereto, the work described in this thesis has focused on the transplantation of simple photosystems (proton-pumping rhodopsins; PPRs) into the cell membrane of the heterotrophic model bacterium Escherichia coli. Both in silico analyses, including metabolic and thermodynamic modeling (Chapter 3) and a series of experimental studies on transplanting PPR photosystems (Chapters 4,6 and 7) were performed, which identified several challenges, limitations and most importantly opportunities. This thesis also describes the application of novel tools to substantially improve the functional production of PPRs and a variety of other membrane proteins in E. coli.

    Chapter 2 provides more details on previously reported examples of heterologous expression of PPRs in several hosts, and on the physiological impact of these transplanted photosystems. Based on this evaluation, some suggestions are made to improve and further exploit the transplantation of these photosystems.

    In Chapter 3 a systematic, integrated in silico analysis is made of anaerobic, photo-electro-autotrophic synthetic metabolism in E. coli, consisting of (i) a PPR photosystem for ATP regeneration, (ii) an electron uptake pathway, and (iii) a natural or synthetic carbon fixation pathway. Constraint-based metabolic modelling of E. coli central metabolism is used, in combination with kinetic and thermodynamic pathway analyses. The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the PPR photosystems, and the relatively high ATP consumption due to maintenance. In general these analyses illustrate the potential of in silico analyses to identify potential bottlenecks and solutions in complex designs for autotrophic and photosynthetic metabolism, as a basis for subsequent experimental implementation.

    To tackle a main bottleneck of PPR systems: their functional membrane-embedded production level, the heterologous production in E. coli of the proton-pumping rhodopsins from Gloeobacter violaceus (GR) and from Thermus thermophilus JL18 (TR) is quantified and experimentally optimized in Chapter 4. High constitutive production of both rhodopsin proteins is achieved by fine-tuning transcription and translation. Besides the canonical retinal pigment, the GR system has the ability to bind a light-harvesting antennae pigment, echinenone. After optimization of the heterologous pigment biosynthesis pathways for either retinal or echinenone production, appropriate quantities of retinal or echinenone for PPR reconstitution were detected in E. coli. Association of echinenone with GR broadens its absorption spectrum in E. coli, broadening the potential for light-harvesting also to blue light. Optimization of the branched pathway for simultaneous biosynthesis of both retinal and echinenone has been attempted by using a smart library of variable Ribosome Binding Sites (RBSs) with varying strengths (RedLibs). In general, the here described approaches towards improved functional production of rhodopsin photosystems in E. coli and their pigments may prove more widely applicable for heterologous production of more complex photosystems and other systems.

    In Chapter 5 an up-to-date overview is provided on how codon usage can influence functional protein production. The fact that all known organisms have an incomplete set of tRNAs, indicates that biased codon usage could act as a general mechanism that allows for fine-tuning the translation speed. Although translation initiation is the key control step in protein production, it is broadly accepted that codon bias, especially in regions further downstream of the start codon, can contribute to the translation efficiency by tuning the translation elongation rate. Modulation of the translation speed depends on a combination of factors, including the secondary structure of the transcript (more or less RNA hairpins), the codon usage landscape (frequent and more rare codons) and for bacteria also RBS-like sequences at which ribosomes can pause. The complex combination of interdependent factors related to codon usage that can influence translation initiation and elongation. This complexity makes that the design of synthetic genes for heterologous expression is still in its infancy, and despite the availability of some codon usage algorithms, it is often as well a matter of trial and error.

    In Chapter 6 the effect of different codon usage algorithms (optimization and harmonization) has been experimentally tested for heterologous production of membrane proteins. Apart from the codon usage algorithms also the combined effect of transcriptional fine-tuning in E. coli LEMO21(DE3) was assessed. The overproduction of 6 different membrane-embedded proteins, including 4 PPR variants (from bacteria, archaea and eukaryotes), was tested. For production of tested PPR variants, the different codon usage algorithms hardly influenced production, while transcriptional tuning had a large impact on production levels. Interestingly, for the other two tested non-PPR membrane proteins, some codon usage variants significantly improved production on top of transcriptional tuning. For both these proteins the codon-optimization algorithm reduced functional production below that of the wild-type codon variant, while the harmonization algorithm gave significantly higher production, equal or even higher than for the wild-type variant.

    In Chapter 7 it is demonstrated that a translational-tuning system can be used to successfully optimize the expression of several membrane proteins, based on initial findings presented in Chapter 4. The employed, recently developed Bicistronic Design (BCD) system is based on translational coupling of a gene encoding a short leader peptide and the gene of interest that is under control of a variable ribosome binding site. A standardized library of 22 RBSs allows for precise, gene context-independent, fine-tuning of expression of this second gene, here encoding a membrane protein. For all four membrane proteins tested in this study the BCD approach resulted in 3 to 7-fold higher protein levels than those obtained by two other recently developed methods for optimizing membrane protein production. The presented approach allows for inducer-free, constitutive, high-level production of membrane proteins in E. coli, which can be widely applicable for both membrane protein purification studies as well as for synthetic biology projects involving membrane proteins.

    In Chapter 8 a broad review and perspectives are provided on the potential of microbial autotrophs for the production of value-added compounds from CO2. Both photoautotrophic and chemolithoautotrophic production platforms are discussed, and recent progress in improving their efficiency and production potential is highlighted. Transplantation efforts for photosystems, but also for CO2 fixation pathways and electron uptake systems are discussed. An overview is provided on novel in silico and experimental approaches to engineer components related to autotrophy in heterotrophic and autotrophic model hosts, including approaches applied in this thesis. Future avenues are discussed for realizing more efficient autotrophic production platforms.

    Finally, in Chapter 9 and 10 the work in this thesis is summarized and a general discussion is provided on future avenues for engineering of PPR photosystems, photosystems in general and on the optimization of membrane protein production.

    Breaking down barriers: construction of a hybrid heterochiral membrane
    Siliakus, Melvin - \ 2016
    Wageningen University. Promotor(en): John van der Oost, co-promotor(en): Servé Kengen. - Wageningen : Wageningen University - ISBN 9789462579293 - 237
    membranes - engineering - escherichia coli - fatty acids - isoprenoids - archaea - thermococcus kodakarensis - polymerase chain reaction - gene knock-out - dna modification - membranen - engineering - escherichia coli - vetzuren - isoprenoïden - archaea - thermococcus kodakarensis - polymerase-kettingreactie - inactivering van genen - dna-modificatie

    Because of a chemical disparity between Archaeal and Bacterial membrane-lipids, these organisms thrive under distinct environmental conditions. Archaea are generally more resistant to extreme habitats like low pH, high temperature or presence of solvents. It has therefore long been hypothesized that the archaeal lipids provide archaeal cells with a higher robustness than bacterial lipids do for Bacteria. A recent study in which bacterial and archaeal lipids were mixed to form hybrid vesicles “lipid enclosed round structures”, for instance showed a higher temperature dependent stability than either the bacterial or archaeal lipid vesicles separately. In the present study, we therefore introduced the enzymatic machinery for assembly of archaeal lipids into the bacterium Escherichia coli. This engineering led to cells with a mixed membrane at a surprisingly high amount of 28% archaeal lipids. Although the intervention led to severe morphological malformations, the cells indeed showed an increased robustness to extreme cold and butanol.

    Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation
    Vingerhoeds, M.H. ; Nijenhuis, M.A. ; Ruepert, N. ; Bredie, W.L.P. ; Kremer, S. - \ 2016
    Water Research 94 (2016). - ISSN 0043-1354 - p. 42 - 51.
    drinking water - water quality - sensory evaluation - taste research - reverse osmosis - membranes - filtration - drinkwater - waterkwaliteit - sensorische evaluatie - smaakonderzoek - omgekeerde osmose - membranen - filtratie
    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical–chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly.
    Lipid bilayer stability in relation to oxide nanoparticles
    Pera, H. - \ 2015
    Wageningen University. Promotor(en): Frans Leermakers, co-promotor(en): Mieke Kleijn. - Wageningen : Wageningen University - ISBN 9789462574670 - 144
    lipids - membranes - stability - nanotechnology - particles - analytical methods - models - modeling - lipiden - membranen - stabiliteit - nanotechnologie - deeltjes - analytische methoden - modellen - modelleren
    Lipid bilayer stability in relation to oxide nanoparticles

    All living organisms are composed of cells that are filled with a thick molecular soup. These molecules constitute a complex machinery that brings these cells to life. To contain these molecules, and to protect them from the hostile outer environment, a phospholipid bilayer envelopes the cell. It is essential that this lipid bilayer, also known as the cell membrane, should remain intact and form a perfect barrier at all times. Industrially manufactured nanoparticles are suspect to be able to penetrate this barrier, and thus endanger living organisms in the environment. This thesis deals with some aspects of the structural integrity of lipid bilayers, and especially how this integrity is affected by the interaction with nanoparticles.

    Experiments were performed with silica and titanium dioxide nanoparticles, interacting with lipid bilayers, using a variety of experimental techniques. In addition, a theoretical model was applied that is based on the Scheutjens-Fleer Self Consistent Field (SCF) theory. This model delivered detailed structural and thermodynamic information about the lipid bilayer. The modelling work helped us to improve our understanding of lipid bilayer stability, and showed the effect of the interaction with the nanoparticles on the phospholipid bilayer. These latter results could be related directly to our experiments.

    Let us first experimentally regard the interaction of lipid bilayers with synthetic oxide nanoparticles. We developed a protocol for high-throughput screening of the nanoparticle-bilayer interaction using a fluorescence technique. Results from this method were combined with reflectometry measurements and atomic force microscopy (AFM). The combination of these methods allowed us to relate lipid bilayer integrity to its interaction with nanoparticles and their adsorption onto the bilayer. In addition, the AFM results yielded detailed structural information at the nano-scale. We found that the interaction strongly depends on both lipid bilayer and nanoparticle charge. However, the specific interaction that depends on the nanoparticle type, starts to play a role when the charges are low. When the total interaction strength is regarded, a regime was found at which interaction is strong enough for the nanoparticles to adsorb onto the bilayer, but too weak to disrupt the bilayer. If, however, the bilayer is disrupted by the nanoparticles, the particle may steal away some lipid molecules from the bilayer, and leave again to disrupt the bilayer elsewhere.

    Let us now go into more detail on the SCF modelling. Bilayers are composed of phospholipids, which consist of a hydrophilic head group, and a hydrophobic tail. These bilayers were modelled using a single lipid molecule type, of which the head group structure and lipid tail length could be varied. We thus obtained bilayers that varied in their thickness, and the space that a single lipid takes within the bilayer. Changes in bilayer composition affect the bilayer mechanical properties, such as those constants that describe bilayer stretching or bending. This thesis shows how vesicles, which are bilayers in a globular shape, may become unstable if the bilayer lipid composition is changed. Under certain conditions, a vesicle would prefer to fall apart into many smaller vesicles, which is when highly charged head groups start to repel each other. Or the bilayer may form continuous cubic phases, which might occur if lipids with uncharged head groups but with very long tails are used to form the bilayer. Under very specific and finely tuned conditions, a lipid bilayer may become unstable to form stable pores in the membrane, or to fall apart into tiny lipid discs.

    Intracellular accommodation of rhizobia in legume host cell: the fine-tuning of the endomembrane system
    Gavrin, A.Y. - \ 2015
    Wageningen University. Promotor(en): Ton Bisseling, co-promotor(en): E. Federova. - Wageningen : Wageningen University - ISBN 9789462574182 - 160
    peulgewassen - rhizobium - bodembacteriën - endosymbiose - wortelknolletjes - membranen - waardplanten - legumes - rhizobium - soil bacteria - endosymbiosis - root nodules - membranes - host plants

    The symbiosis of legumes with rhizobia leads to the formation of root nodules. Rhizobia which are hosted inside specialized infected cells are surrounded by hostderived membranes, forming symbiosomes. Although it is known that symbiosome formation involves proliferation of membranes and changing of host cell architecture the mechanisms involved in these processes remain largely uncovered.

    In this thesis, I studied in more detail the adaptation of the endomembrane system of infected cells to intracellular rhizobia. I have shown that in the first cell layer of the nitrogen-fixing zone, the vacuole of the infected cells shrinks, creating space for the expanding symbiosomes. Here the expression of homotypic fusion and vacuole protein sorting complex (HOPS) genes VPS11 and VPS39 are switched off, whereas tonoplast proteins, like the vacuolar aquaporin TIP1g, are targeted to the symbiosome membrane. These observations suggest that tonoplast-targeted traffic in infected cells is altered. This retargeting is essential for the maturation of symbiosomes.

    Accommodation of intracellular rhizobia requires also the reorganization of the actin cytoskeleton. I have shown that during symbiosome development the symbiosomes become surrounded by a dense actin network and in this way, the actin configuration in infected cells is changed markedly. The actin nucleating factor ARP3 is operational in the rearrangement of actin around the symbiosome.

    It is known that the plasma membrane is inelastic; its capacity to stretch is only around 1-3%. Exocytosis of new membrane material is therefore involved in changes in the size of the membrane surface and in repair of damaged membrane loci. Membrane tension may create a vector for the fusion of membrane vesicles. To test this, the localization of proteins from the group of synaptotamin calcium sensors involved in membrane fusion, was studied. I have shown that the Medicago synaptotamins, MtSyt2 and MtSyt3, are localised on protrusions of the host plasma membrane created by expanding rhizobia (infection threads, cell wall-free unwalled droplets). Hence, at these sites of contact between symbionts membrane tension may create a vector for exocytosis.

    It is known that the host cell wall is modified during the development of infected cells. This process is mediated by the exocytotic pathway employing vesicle-associated membrane proteins (VAMPs) from the VAMP721 family. Previously it was shown in Medicago nodules, that cell-wall free interface membrane formation during bacterial release is dependent on these proteins. I have shown that the pectin modifying enzyme pectate lyase is delivered to the site of bacterial release in soybean nodules by VAMP721-positive vesicles.

    My study uncovered new mechanisms involved in the adaptation of host cells to intracellular rhizobia: defunctionalization of the vacuole, actin cytoskeleton rearrangement and the retargeting of host cell proteins to the interface membrane.

    Spatial constraints and the organization of the cytoskeleton
    Ga^rlea, I.C. - \ 2015
    Wageningen University. Promotor(en): Bela Mulder. - Wageningen : Wageningen University - ISBN 9789462572126 - 175
    celskelet - microtubuli - actine - eiwitten - celdeling - microvezels - membranen - cytoskeleton - microtubules - actin - proteins - cell division - microfilaments - membranes

    The shape of animal cells is in controlled by a network of filamentous polymers called the cytoskeleton. The two main components of the cytoskeleton are actin filaments and microtubules. These polymers continuously reorganize in order to performed their diverse cellular functions. For example, in processes such as cell migration actin filaments grow against the membrane, creating flat protrusions called lamellipodia. The lamellipodia enable the cells to move over surfaces. Microtubules are a key player in the cell division mechanism. There, the proper separation of the genetic material between the two daughter cells is controlled by two microtubule asters. The positioning of these two asters also determines the location where the cells will physically separate. Both migration and division are crucial processes for the cell, however the mechanisms underlying these processes are still poorly understood. The organization of the cytoskeleton in cells, and thus their functioning as cell shapers, is an interplay between mutual interaction, confinement and protein mediated interactions. Since cells are exquisitely complex systems, experimentally, the bottom-up approach proves useful in understanding the contribution of each of these interactions on the cytoskeleton organization. This approach is based on the idea of reconstructing a minimal system and adding more complexity to it as our understanding of this system increases.

    Starting by a bottom-up approach, as it is done in experimental systems, we study various aspects of confinement and mutual interactions on cytoskeleton organization. The simplest system in which these two interactions are expected to compete is when dense enough rigid cytoskeletal polymers are confined. Experimentally, this question is addressed by confining these polymers in microchambers which are small compared to the persistence length of the enclosed polymers. In Chapter 2, using Monte Carlo simulations, we investigate the organization of rigid polymers confined in shallow square containers, this geometry being simplified model of a lamellipodium. We find that, in the regime where the confinement effect, which causes wall alignment of the polymers, competes with the self-aligning tendency of the polymers, the organization is characterized by a nematic droplet aligned along a diagonal and wall aligned polymers. The pattern is stabilized by linear defect structures.

    By the same methods, in Chapter 3, we study rigid polymers in curved wall confinement, finding that the bipolar structure appearing in the disk geometry is drastically modified by the opening of a hole in the middle of the container. Unexpectedly, in this annular geometry, the organization is characterized by highly aligned domains separated by radial defect walls. The patterns observed are the result of the finite size of the particles.

    When the rigid polymers are small compared to the confining volume, their orientation is expected to vary over lengths which are much larger than the length of the polymer. In this regime the system is well described by continuum theories. Since currently employed continuum models either exclude the emergence of singularities by the way they are constructed (Oseen-Frank model) or are valid only in for a limited density range around the transition from an unordered to an ordered system (Landau-De Gennes model), in Chapter 4, we construct a mean-field model combining the virtues of these two models. We apply this model to a system of rigid small polymers enclosed in rectangular shallow container (geometry similar to the one in Chapter 2), finding that patterns which are minimizing the energy of the system are characterized by continuum variation of the orientation. However, our model also yields patterns containing point defects which have slightly higher energy.

    So far we have considered only rigid cytoskeletal polymers, however at the length scale of the cell the polymers are better described by an elastic rod. In Chapter 5 we study the configurations adopted by a cytoskeletal polymers when enclosed by a rigid ellipsoidal membrane. We find that, compared to the spherical confinement, the change in shape of the confining membrane leads to non-trivial organization of the enclosed polymers. Among the patters observed are single bundles, planar asters, circular and elliptical rings. In reconstructed systems such as emulsion droplets the cytoskeletal polymers push against the membrane, deforming it but, since the membrane is under tension, it also constrains them to bend. Determining the polymeric configurations as a function of the confining surface is the first step towards understanding this mechanical interplay between the cytoskeleton and the membrane.

    For proper cell division, a precise positioning of the two microtubule asters involved is required. The positioning of the two asters is based on pushing and pulling forces generated by the microtubule-membrane interaction. Experimental evidence shows that, in reconstructed systems, a spatial separation between the two asters in always present. Therefore, in Chapter 6, we investigate the steric repulsion between two asters finding that it indeed leads to a spatial separation.

    The models that we developed in this thesis are a starting point for understanding the cytoskeletal organization and its role in the cell. In the last Chapter of this thesis we give some directions that the present work opens.

    High loaded MBRs for organic matter recovery from sewage: Effect of solids retention time on bioflocculation and on the role of extracellular polymers
    Faust, L. ; Temmink, B.G. ; Zwijnenburg, A. ; Kemperman, A.J.B. ; Rijnaarts, H. - \ 2014
    Water Research 56 (2014). - ISSN 0043-1354 - p. 258 - 266.
    waterzuivering - membranen - biofilms - organische stof - water treatment - membranes - biofilms - organic matter - municipal waste-water - submerged membrane bioreactor - improved energy recovery - activated-sludge process - microbial community - surface-properties - substances eps - performance - extraction - constituents
    High loaded MBRs (HL-MBR) can concentrate sewage organic matter by aerobic bioflocculation for subsequent anaerobic conversion to methane or volatile fatty acids. In the range of very short solid retention times (SRT), the effect of SRT on bioflocculation and EPS production in HL-MBR was investigated. This short SRT range was selected to find an optimum SRT maximising recovery of organics by aerobic bioflocculation and minimizing losses of organics by aerobic mineralization. Bioflocculation was studied in five HL-MBRs operated at SRTs of 0.125, 0.25, 0.5, 1 and 5 d. The extent of flocculation, defined as the fraction of suspended COD in the concentrate, increased from 59% at an SRT of 0.125 d to 98% at an SRT of 5 d. The loss of sewage organic matter by biological oxidation was 1, 2, 4, 11 and 32% at SRT of 0.125–5 d. An SRT of 0.5–1 d gave best combination of bioflocculation and organic matter recovery. Bound extracellular polymeric substances (EPS) concentrations, in particular EPS-protein concentrations, increased when the SRT was prolonged from 0.125 to 1 d. This suggests that these EPS-proteins govern the bioflocculation process. A redistribution took place from free (supernatant) EPS to bound (floc associated) EPS when the SRT was prolonged from 0.125 to 1 d, further supporting the fact that the EPS play a dominant role in the flocculation process. Membrane fouling was most severe at the shortest SRTs of 0.125 d. No positive correlation was detected between the concentration of free EPS and membrane fouling, but the concentration of submicron (45–450 nm) particles proved to be a good indicator for this fouling.
    Theory and operation of capacitive deionization systems
    Zhao, R. - \ 2013
    Wageningen University. Promotor(en): Bert van der Wal, co-promotor(en): Huub Rijnaarts; Maarten Biesheuvel. - S.l. : s.n. - ISBN 9789461736390 - 155
    waterzuivering - drinkwater - ontzilting - elektrodes - membranen - ionenuitwisseling - water treatment - drinking water - desalination - electrodes - membranes - ion exchange
    Optimization of salt adsorption rate in membrane capacitive deionization
    Zhao, R. ; Satpradit, O.A. ; Rijnaarts, H. ; Biesheuvel, P.M. ; Wal, A. van der - \ 2013
    Water Research 47 (2013)5. - ISSN 0043-1354 - p. 1941 - 1952.
    waterkwaliteit - water - terugwinning - ontzilting - ionisatie - ionenuitwisselingsbehandeling - membranen - water quality - water - recovery - desalination - ionization - ion exchange treatment - membranes - ion-exchange membranes - porous-electrodes - water desalination - brackish-water - transport-properties - carbon - electrochemistry - performance - efficiency - anions
    Membrane capacitive deionization (MCDI) is a water desalination technique based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In MCDI, ion-exchange membranes are positioned in front of each porous electrode to prevent co-ions from leaving the electrode region during ion adsorption, thereby enhancing the salt adsorption capacity. MCDI can be operated at constant cell voltage (CV), or at a constant electrical current (CC). In this paper, we present both experimental and theoretical results for desalination capacity and rate in MCDI (both in the CV- and the CC-mode) as function of adsorption/desorption time, salt feed concentration, electrical current, and cell voltage. We demonstrate how by varying each parameter individually, it is possible to systematically optimize the parameter settings of a given system to achieve the highest average salt adsorption rate and water recovery.
    Effect of low dosages of powdered activated carbon on membrane bioreactor performance
    Remy, M.J.J. ; Temmink, H. ; Rulkens, W.H. - \ 2012
    Water Science and Technology 65 (2012)5. - ISSN 0273-1223 - p. 954 - 961.
    afvalwaterbehandeling - bioreactoren - membranen - actieve kool - poeders - dosering - vervuiling door afzetting - filtreerbaarheid - energiegehalte - waste water treatment - bioreactors - membranes - activated carbon - powders - dosage - fouling - filterability - energy content - polymeric substances eps - sludge - removal - water - mbrs - dewaterability
    Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactors (MBRs). This effect was related to the formation of stronger sludge flocs, which are less sensitive to shear. In this contribution the long-term effect of PAC addition was studied by running two parallel MBRs on sewage. To one of these, PAC was dosed and a lower fouling tendency of the sludge was verified, with a 70% longer sustainable filtration time. Low PAC dosages showed additional advantages with regard to oxygen transfer and dewaterability, which may provide savings on operational costs.
    Understanding flow-induced particle migration for improved microfiltration
    Dinther, A.M.C. van - \ 2012
    Wageningen University. Promotor(en): Remko Boom, co-promotor(en): Karin Schroen. - S.l. : s.n. - ISBN 9789461733498 - 207
    microfluidics - filtratie - migratie - deeltjes - stroming - suspensies - emulsies - membranen - microfluidics - filtration - migration - particles - flow - suspensions - emulsions - membranes

    Membrane microfiltration processes are used in for example the food, biotechnology, chemical and pharmaceutical industry, and more generally in e.g. wastewater treatment. Microfiltration is mostly used to separate components that are greatly different in size, e.g. micro-organisms from water, but rarely to fractionate components that are of similar size. This latter option would be interesting for many applications, since it would lead to enriched starting materials and possibly new products, but is hampered by accumulation of components in and on the membrane due to size exclusion by the pores. This leads to flux reduction and increased retention of components in time, basically the accumulated layer determines which components can pass the membrane (see Figure 1).


    Figure 1. Schematic representation of a cross-flow microfiltration process with a decrease in permeate flux over the length of the membrane due to pore blocking and particle adsorption in the pores and on the membrane walls.
    Most research focusses on accumulation mechanisms (concentration polarization, cake formation and adsorption) and concepts targeted at controlling particle accumulation. One example is back-pulsing, but this only gives a short term solution leading to extensive cleaning procedures given the way membranes are currently operated in practice. Clearly it would be beneficial if accumulation could be prevented, and through that, more stable operation could be achieved.

    This thesis presents how flow-induced particle migration can be used for stable membrane flux and retention of components in time. The particle migration mechanisms that are considered in this thesis, shear-induced diffusion, inertial lift, and fluid skimming, act on particles that are typically between 0.1 and 10 micron. They induce separation of components in the fluid moving (larger) particles away from the membrane, therewith facilitating separation; basically pore size no longer determines particle permeation. In the thesis it will be shown that these effects improve processing of dilute suspensions and make processing of highly concentrated systems possible, which is beyond the scope of current microfiltration processes.

    Before the design of these processes, methods to measure velocity and concentration profiles in microfluidic devices are described, compared and evaluated. The small dimensions of these devices will cause particles to migrate; as is used later in the thesis to facilitate segregation and separation. A drawback of the small dimensions is that they make measurement of velocity and concentration gradients difficult. Based on our evaluation, Nuclear Magnetic Resonance (NMR) and Confocal Scanning Laser Microscopy (CSLM), although expensive, are the most promising techniques to investigate flowing suspensions in microfluidic devices, where one may be preferred over the other depending on the size, concentration and nature of the suspension, the dimensions of the channel, and the information that has to be obtained.

    CSLM is used to study the behaviour of suspensions, between 9 and 38 volume%, at the particle level. Under Poiseuille flow in a closed microchannel, shear-induced diffusion causes migration in these suspensions. Under all measured process conditions, particles segregate on size within an entrance length of around 1000 times the channel height. Mostly, the larger particles migrate to the middle of the channel, while the small particles have high concentrations near the walls. This indicates that the small particles could be collected from their position close to the wall and that this principle can be applied to microfiltration (see Figure 2).


    Figure 2. Schematic representation of a cross-flow microfiltration process with a constant permeate flux over the length of the membrane due to shear-induced particle migration in combination with the use of a closed entrance length and large pores.
    Microfiltration of emulsions proves that the small particles can be removed without accumulation of particles in and on the membrane, as long as the process conditions are chosen appropriate. The membrane cross-flow module consists of a closed channel to allow particles to migrate due to shear-induced diffusion followed by a membrane with 20 micron pores, being much larger than the particles, where fractions of these emulsions can be removed. The emulsions consist of small droplets (~2.0 micron) and large droplets (~5.5 micron), with total concentrations between 10 and 47% and different ratios between small and large particles. As expected, the size of the emulsion droplets in the permeate is a function of trans-membrane pressure, membrane design and oil volume fraction (i.e., of the total, the small and the large particles). The guidelines for appropriate process conditions are described and application of the right process conditions leads to very high selectivity. This means that the permeate only consists of small droplets, and on top of that their concentration is higher than in the original emulsion. Especially at high droplet concentration (which is known to cause severe fouling in regular membrane filtration), these effects are occurring as a result of shear-induced diffusion. If only small particles are targeted in the permeate, the module can be operated at fluxes of 40 L/(h•m²); if fractionation is targeted the fluxes can be maintained considerably higher (2-10 fold higher).

    Separation of concentrated suspensions is currently done by dilution and since the process based on shear-induced diffusion works well at low velocities and high concentrations, industrial application could have major benefits in terms of energy and water use. An outlook is given on how current industrial processes can be designed and improved in terms of energy consumption by making use of particle migration. It is shown that return of investment of installation of these new membrane modules is short compared to the membrane life time, due to high energy savings. In order to reach this, it will be necessary to take unconventional process conditions that target particle migration and membrane designs as a starting point.

    Besides concentrated suspensions, also dilute suspensions benefit from particle migration. Migration phenomena can induce fractionation of yeast cells from water in dilute suspensions, using micro-engineered membranes having pores that are typically five times larger than the cells. The observed effects are similar to fluid skimming (in combination with inertial lift), and the separation performance can be linked to the ratio between cross-flow and trans-membrane flux, which is captured in a dimensionless number that can predict size of transmitted cells. For sufficiently high cross-flow velocity, the particles pass the pore and become part of the retentate; the separation factor can simply be changed by changing the ratio between cross-flow velocity and trans-membrane flux. Since the membranes have very large pores, fouling does not play a role and constant high trans-membrane flux values of 200–2200 L/(h•m2) are reached for trans-membrane pressures ranging from 0.02 to 0.4 bar.

    In conclusion, particle migration can improve (membrane) separation processes and even has the potential to lead to totally new separation processes. Particle migration can be advantageous in both dilute as well as concentrated systems, leading to reduced fouling, reduced energy and water consumption and a reduction in waste. This can all be achieved at production capacity similar or better than currently available in microfiltration processes.

    Enzyme-catalyzed modification of poly(ethersulfone) membranes
    Nady, N. - \ 2012
    Wageningen University. Promotor(en): Remko Boom; Han Zuilhof, co-promotor(en): Karin Schroen; Maurice Franssen. - S.l. : s.n. - ISBN 9789461731456 - 172
    membranen - oppervlakteverandering - laccase - enzymen - kunststoffen - membranes - surface modification - laccase - enzymes - plastics

    The robustness of a membrane is determined by the properties of the base polymer and the functionality of its surface. One of the most popular polymers used for membrane preparation is polyethersulfone (PES), which has excellent thermo-physical properties, but the surface properties are in need of improvement to reduce membrane fouling by adsorption of e.g. protein and live cells, which cause sever flux decline during filtration. Therefore, it is not strange that a wide range of modification methods has been published to reduce surface hydrophobicity of PES membranes. However, the methods that are currently suggested are all rather offer random control over the resulting surface structure and may be environmentally adverse

    This study presents enzyme-initiated grafting of PES membranes as the first successful example of an environmentally friendly modification of PES membranes. Various phenolic acids, such as 4-hydroxybenzoic acid and gallic acid (3,4,5-trihydroxybenzoic acid), were coupled to the membrane in aqueous medium at room temperature using laccase from Trametes versicolor as catalyst. This enzyme is able to oxidize phenolic compounds to their corresponding free radicals that are subsequently grafted onto PES membranes, introducing polar groups (OH, COOH) on the membrane surface by formation of a covalent C-O linkage as was proven by spin density calculations and IRRAS.

    We succeed in altering the surface properties of PES membranes using laccase-catalyzed modification method. It was found that the surface structure or shape that can be tuned through both the modification conditions and the modifier structure, has a significant role in prevention of adsorption rather than surface hydrophilicity as is often assumed. Membrane flux is hardly influenced (10% reduction), and foulant (e.g., bovine serum albumin, dextrin, tannin, and pathogenic bacterium Listeriamonocytogenes) repellence is greatly increased.

    In conclusion, the enzyme-catalyzed modification method shows a remarkable flexibility, and allows careful tuning of the membrane properties in such a way that membrane fouling can be suppressed. Besides, the modification method does not influence the bulk properties of the membrane adversely, the modification layer is resistant to a wide range of pH, and the costs of this modification on industrial scale are reasonable, which makes this modification method an interesting eco-friendly alternative to currently used methods.

    Low concentration of powdered activated carbon decreases fouling in membrane bioreactors
    Remy, M.J.J. - \ 2012
    Wageningen University. Promotor(en): Wim Rulkens, co-promotor(en): Hardy Temmink. - S.l. : s.n. - ISBN 9789461732309 - 163
    afvalwaterbehandeling - geactiveerd slib - membranen - bioreactoren - filtratie - waste water treatment - activated sludge - membranes - bioreactors - filtration
    Het doel van deze studie was te onderzoeken welke slibeigenschappen verantwoordelijk zijn voor de membraanvervuiling in MBR systemen, en om een methode te vinden om deze eigenschappen dusdanig te manipuleren dat de membraanvervuiling drastisch kan worden gereduceerd.
    Dormancy cycling in seeds: mechanisms and regulation
    Claessens, S.M.C. - \ 2012
    Wageningen University. Promotor(en): Linus van der Plas, co-promotor(en): Henk Hilhorst; P.E. Toorop. - S.l. : s.n. - ISBN 9789461731906 - 161
    sisymbrium officinale - arabidopsis thaliana - kiemrust - zaden - genen - levenscyclus - slaaptoestand - membranen - metabolisme - sisymbrium officinale - arabidopsis thaliana - seed dormancy - seeds - genes - life cycle - dormancy - membranes - metabolism

    The life cycle of most plants starts, and ends, at the seed stage. In most species mature seeds are shed and dispersed on the ground. At this stage of its life cycle the seed may be dormant and will, by definition, not germinate under favourable conditions (Bewley, 1997).

    Seasonal dormancy cycling is a characteristic found in plant seeds. Being able to cycle in and out of dormancy allows the seed to survive decades or even centuries, allowing germination to be spread over time, but only when optimal conditions are available, not only for germination but especially for seedling establishment. In this thesis we have attempted to further elucidate the mechanisms behind dormancy, germination and dormancy cycling.

    Sisymbrium officinale seeds need nitrate and light to start germination (Chapter 2, 3, 4, 6). Nitrate acts in part by reducing the abscisic acid (ABA) levels (a plant hormone that elevates dormancy levels). The action of light and nitrate can also be reached by applying gibberellins (GAs) to the seeds (Chapter 2, 3, 4, 6). GAs are capable of inducing enzymes that hydrolyze the ensdosperm walls (Debeaujon and Koornneef, 2000; Chen and Bradford, 2000; Nonogaki et al., 2000; Manz et al., 2005) In this way GAs could be involved in lowering the physical restrictions imposed by the resistance of the seed coat and the endosperm. On the other hand, GAs may also increase the embryo growth potential.

    For successful survival of the dormant seed, metabolic activity is reduced to avoid rapid depletion of reserves. The metabolic activity of the seed was measured using electron paramagnetic resonance (EPR), with TEMPONE as a spin probe, and the respiratory activity was measured with the Q2-test (Chapter 2).We showed that primary dormancy was accompanied by hardly any metabolic or respiratory activity, and this increased considerably when dormancy was broken by nitrate. However, when the light pulse was not given and the seeds had become secondary dormant the metabolic activity slowed down.

    Regulation of dormancy is tightly linked with abiotic stress factors from the environment. The regulation and survival of the seed under stress conditions is largely dependent on the composition of the cytoplasm. We tested this by EPR, using carboxyl-proxyl (CP) spin probe (Chapter 4). The primary dormant and sub-dormant seeds possessed a higher viscosity than the germinating seeds. The viscosity of secondary dormant seeds appeared intermediate; however, the ease at which the vitrified water melted was similar to that of primary dormant seeds. As a result of the differences in viscosity, the temperature of vitrified water melting differed between the different dormancy states. The changes in cytoplasmic viscosity and vitrified water melting may be linked to changes in metabolism and the content of high molecular weight compounds.

    As membranes are the primary target for temperature perception, they are often implicated in regulating dormancy. Therefore, Hilhorst (1998) put forward a hypothesis in which changes in responsiveness to dormancy breaking factors like nitrate and light was a function of cellular membrane fluidity. In Chapter 3 we indeed showed that dormancy is a function of membrane fluidity. Primary dormant seeds of Sisymbrium officinale appeared to have very rigid membranes, whereas breaking dormancy increased membrane fluidity considerably. However, when sub-dormant seeds became secondary dormant membrane fluidity decreased again, but not to the rigidity seen in primary dormant seeds. One of the most common ways in which cells control membrane fluidity is by homeoviscous adaptation with the help of desaturases. Desaturase involvement in changes in membrane fluidity due to changes in dormancy was tested in Chapter 3 (using Sisymbrium officinale) and Chapter 5 (using Arabidopsis thaliana). Here we found that although desaturase activity may change the membrane fluidity or influence the germination/dormancy phenotype, the two are not linked, unless the effects of these enzymes are very local within the seed. Finally, in Chapter 7, we presented a new model in which a membrane anchored dormancy related protein/transcription factor is activated by changes in membrane fluidity. The activated form is transported to the nucleus, where it starts the germination process, which includes changes in metabolism and mobilization of storage reserves.

    Effect of temperature shocks on membrane fouling in membrane bioreactors
    Brink, P. van den; Satpradit, O.A. ; Bentem, A. van; Zwijnenburg, A. ; Temmink, B.G. ; Loosdrecht, M.C.M. - \ 2011
    Water Research 45 (2011)15. - ISSN 0043-1354 - p. 4491 - 4500.
    afvalwaterbehandeling - bioreactoren - membranen - geactiveerd slib - temperatuur - vervuiling door afzetting - viscositeit - waste water treatment - bioreactors - membranes - activated sludge - temperature - fouling - viscosity - waste-water treatment - cross-flow microfiltration - flux-step method - activated-sludge - particle deposition - size distribution - light-scattering - bubble-size - performance - ultrafiltration
    Temperature is known to influence the biological performance of conventional activated sludge systems. In membrane bioreactors (MBRs), temperature not only affects the bioconversion process but is also shown to have an effect on the membrane performance. Four phenomena are generally reported to explain the higher resistance for membrane filtration found at lower temperatures: (1) increased mixed liquor viscosity, reducing the shear stress generated by coarse bubbles, (2) intensified deflocculation, reducing biomass floc size and releasing EPS into the mixed liquor, (3) lower backtransport velocity and (4) reduced biodegradation of COD. Although the higher resistance at low temperatures has been reported in several papers, the relation with supernatant composition has not been investigated before. In this paper, the composition of the soluble fraction of the mixed liquor is related to membrane performance after exposing the sludge to temperature shocks. Flux step experiments were performed in an experimental system at 7, 15, and 25° Celsius with sludge that was continuously recirculated from a pilot-scale MBR. After correcting the permeate viscosity for temperature, higher membrane fouling rates were obtained for the lower temperature in combination with low fouling reversibility. The soluble fraction of the MBR mixed liquor was analysed for polysaccharides, proteins and submicron particle size distribution. At low temperature, a high polysaccharide concentration was found in the experimental system as compared to the MBR pilot. Upon decreasing the temperature of the mixed liquor, a shift was found in particle size towards smaller particles. These results show that the release of polysaccharides and/or submicron particles from sludge flocs could explain the increased membrane fouling at low temperatures
    Structuring microspheres
    Wagdare, N.A. - \ 2011
    Wageningen University. Promotor(en): Cees van Rijn; Remko Boom, co-promotor(en): Ton Marcelis. - [S.l.] : S.n. - ISBN 9789085859239 - 111
    emulgering - membranen - inkapseling in microcapsules - structuur - emulsification - membranes - microencapsulation - structure

    Encapsulation and use of capsules for controlled release has several applications in pharmaceuticals, foods, cosmetics, detergents and many other products for consumers. It can contribute to sustainability, since it allows an efficient use of active materials, delivery at the required site and possibly a longer shelf life of the products. Many encapsulation systems are basically very thin shells (10 nm – 10 µm) around microscopic reservoirs (100 nm – 100 µm), in which active ingredients are trapped. The release properties are strongly dependent on the material properties of the shell, but also on their size and uniformity.

    The overall objective of this research is to understand the formation process of microcapsules and microspheres by using phase separation in well-defined droplets of a polymeric solution. The primary droplets were produced with microsieve emulsification. The polymer used was Eudragit FS 30D (a commercial copolymer of poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid) 7:3:1), which contains charged carboxylate groups that make the polymer water-soluble at higher pH (>7), allowing for release by a change in pH.

    Chapter 2 presents results that give more insight into microsieve emulsification with high porosity micro-engineered membranes. The droplet formation was strongly influenced by the dynamics of surfactant adsorption. The presence of suitable surfactants in both phases prevents the coalescence of droplets and wetting of the microsieve membranes by the dispersed phase during oil droplet formation. This resulted in the formation of stable emulsions of droplets with a narrow size distribution. The flux of the dispersed phase could be increased an order of magnitude compared to previous methods, without loss of size-distribution of the droplets. Thus, use of a high-porosity membrane, in combination with suitable surfactants in both the dispersed and continuous phases resulted in a much more effective and efficient emulsification process.

    In Chapter 3 crossflow microsieve emulsification was used to prepare porous microcapsules with an average size of about 30 µm. A mixture of Eudragit and hexadecane in dichloromethane (DCM) was emulsified in water.Being a poor solvent for this polymer, demixing of the droplet into a polymeric shell and a hexadecane-rich core occurred upon extraction of the DCM into the water phase. At a low ratio of polymer to hexadecane, the resulting shells were found to be porous. Increasing this ratio resulted in a reduction of the porosity and pore size of the shell. The Eudragit has a pH-dependent solubility. It is insoluble at acidic conditions and rapidly dissolves at alkaline conditions. The capsules were found to be stable at a pH lower than 7.0, whereas the oil core was released within half an hour at pH 7.1 and within a minute at pH 8.0. The morphology of the microcapsules can be adapted with a careful choice of the concentrations of polymer, hexadecane and solvent. At higher concentrations of polymer, the tiny oil droplets that were captured in the forming Eudragit shell were unable to coalesce completely and small, isolated pores were formed within the shell matrix.

    The potential for new microcapsule morphologies was further explored in Chapter 4 where the formation of Eudragit capsules with other oils instead of hexadecane was studied, and in Chapter 5 where a blend of poly(methyl methacrylate) (PMMA) and Eudragit was used.

    In Chapter 4 the effects of chain lengths of vegetable oils on the formation of porous microcapsules with hollow and multi-compartment structures is discussed. The encapsulation of oil and the morphology of the resulting microcapsules depends on the interaction between the Eudragit polymer and the type of oil that was used. Microcapsule formation using long chain length oils such as sunflower oil, olive oil and coconut oil resulted in well-defined microcapsules with a single encapsulated oil droplet, covered with a Eudragit-rich shell. On the other hand, capsules prepared with relatively short chain length oils, such as medium chain triglyceride oil, resulted in capsules with many individual small oil droplets encapsulated in an Eudragit matrix. Extraction of the oil from the microcapsules with hexane results in the formation of hollow porous shells as was investigated with optical microscopy and SEM. These structures are formed during microcapsule formation due to the complex phase separation processes in the Eudragit-water-oil-DCM quaternary system.

    In Chapter 5 the formation of microcapsules is further explored by using a blend of PMMA and Eudragit. Microspheres formed with this blend were found to consist of a PMMA core inside an Eudragit-rich shell, which tends to be porous. As the amount of Eudragit is increased, a thicker and more porous outer shell is formed due to the enhanced interaction of water with Eudragit. After dissolution of the Eudragit at high pH, different core surface structures resulted, from irregular surfaces to microspheres with a fiber-like, swollen corona around it, and to a surface covered with small nodular structures, dependent on the concentrations of PMMA and Eudragit in the initial mixture. As already indicated above, these structures are formed as a result of complex phase separation processes between polymers and (non)solvents, and between the two polymers.

    In Chapter 6 the results described in this thesis were compared with existing literature, yielding an outlook on the field of microencapsulation through phase separation. A general concept is discussed on how to obtain various interesting complex structures with phase separation combined with microsieve emulsification. Finally, a conceptual process design is discussed for industrial scale production of microcapsules and microspheres with use of microsieve emulsification.

    This thesis has yielded insight in the formation of a range of microcapsule morphologies by investigating a range of new production methods (microsieves and demixing conditions) and formulations (different concentrations, oils and using one polymer or a blend), and through this provides better insight into the mechanisms of microcapsule formation. While some of the structures may be directly used for microcapsule formation, some other structures may well have potential for other applications.

    Figure. Examples of structured microcapsules and microspheres developed in this thesis.

    Biofilm development on new and cleaned membrane surfaces
    Bereschenko, L.A. - \ 2010
    Wageningen University. Promotor(en): Fons Stams; M.C.M. Loosdrecht, co-promotor(en): G.J.W. Euverink. - [S.l. : S.n. - ISBN 9789085858065 - 161
    biofilms - membranen - ongewenste aangroei van levende (micro)organismen - kunstmatige membranen - zuiveringsinstallaties - biofilms - membranes - biofouling - artificial membranes - purification plants
    This thesis presents a comprehensive research report on microbiological aspects of biofouling occurrence in full-scale reverse osmosis (RO) systems. Biofouling is a process in which microorganisms attach to membranes and develop into a thick film that can choke the entire RO system. Management of this problem requires basic understanding of the mechanism of this phenomenon. The basic questions of this PhD research project therefore addressed the origin, succession and spatiotemporal development of biofilms in full-scale RO systems, in particular in relation to operational aspects of RO systems. The multifaceted research strategy involving acquisitions of representative samples and use of many molecular and microscopic analysis techniques in parallel was employed. The investigation showed that biofilms are able to grow on any surface in a full-scale RO plant. This gives local niches for detachment of biomass, either as single cells or cell clumps, and results in a spreading of bacteria to the further stages of the plant. In the RO membrane modules, the enriched bacteria might more easily colonise the surfaces since they will be better adapted to growth in the system than bacteria present in the feed water. Initially, the single cell colonizers (sphingomonads) form a number of flat and abundantly EPS-embedded cell monolayers over the entire membrane surface. The clumps-associated pioneers (mainly Beta- and Gammaproteobacteria) appear to be trapped mainly in the first part of the module, most likely due to a filtering action of the spacer. In time, these bacteria develop in pillar-like structures and slowly spread throughout the whole membrane module on top of the established sphingomonads biofilm. The secondary colonisers (bacteria and eukaryotes) occur in the resulting biofilm formations. Although composition of the biofilm microbial community undergoes a succession in time, the architecture of an established biofilm appears to be rather stable. Conventional treatment of RO membrane modules with chemicals did not lead to cleaning: the sphingomonads cells can be detected under the collapsed but obviously not removed biofilm EPS matrix. After cleaning, the biofouling layer seemed to grow faster (within 6 days) than a fresh biofilm (16 days). To conclude, biofouling is a complex phenomenon with two appearances: a fouling layer on the membrane limiting the water flux and a fouling layer on the spacer limiting the water flow through the spacer channel and resulting in an increased pressure drop. It became clear that cleaning strategies should focus more on the removal of accumulated biomass and not only on the killing of cells. Moreover, the basal Sphingomonas layer requires further research to appropriately control biofouling in RO systems. It might also be possible to design the RO - membrane module in a different manner, leading to a different biofilm morphology which gives less rise to operational problems.
    Why low powdered activated carbon addition reduces membrane fouling in MBRs
    Remy, M.J.J. ; Potier, V. ; Temmink, B.G. ; Rulkens, W.H. - \ 2010
    Water Research 44 (2010)3. - ISSN 0043-1354 - p. 861 - 867.
    afvalwaterbehandeling - waterzuivering - actieve kool - adsorptie - membranen - biologische filtratie - filtreerbaarheid - uitvlokking - biodegradatie - zuiveringsinstallaties - waste water treatment - water treatment - activated carbon - adsorption - membranes - biological filtration - filterability - flocculation - biodegradation - purification plants - waste-water treatment - bioreactor mbr - sludge - flux - performance - filtration - bioflocculation - operation
    Previous research had demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactor (MBRs). In this contribution several mechanisms to explain this beneficial effect of PAC were investigated, including enhanced scouring of the membrane surface by PAC particles, adsorption of membrane foulants by PAC and subsequent biodegradation and a positive effect of PAC on the strength of the sludge flocs. It was concluded that the latter mechanism best explains why low dosages of PAC significantly reduce membrane fouling. Cheaper alternatives for PAC may have a similar effect
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.