Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Dynamics of adaptation in experimental yeast populations exposed to gradual and abrupt change in heavy metal concentration
    Gorter, Florien ; Aarts, Mark ; Zwaan, B.J. ; Visser, J.A.G.M. de - \ 2015
    Wageningen UR
    adaptation - ecology - evolutionary - microbial - Environmental variability - evolution - fitness - genetics - population - dynamics - fungi - heavy metals - pleiotropy
    Directional environmental change is a ubiquitous phenomenon that may have profound effects on all living organisms. However, it is unclear how different rates of such change affect the dynamics and outcome of evolution. We studied this question using experimental evolution of heavy metal tolerance in the baker´s yeast Saccharomyces cerevisiae. To this end, we grew replicate lines of yeast for 500 generations in the presence of (i) a constant high concentration of cadmium, nickel or zinc, or (ii) a gradually increasing concentration of these metals. We found that gradual environmental change leads to a delay in fitness increase compared to abrupt change, but not necessarily to a different fitness of evolutionary endpoints. For the non-essential metal cadmium this delay is due to reduced fitness differences between genotypes at low metal concentrations, consistent with directional selection to minimize intracellular concentrations of this metal. In contrast, for the essential metals nickel and zinc different genotypes are selected at different concentrations, consistent with stabilizing selection to maintain constant intracellular concentrations of these metals. These findings indicate diverse fitness consequences of evolved tolerance mechanisms for essential and non-essential metals, and imply that the rate of environmental change and the nature of the stressor are crucial determinants of evolutionary dynamics.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.