Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    New approaches to uncertainty analysis for use in aggregate and cumulative risk assessment of pesticides
    Kennedy, M.C. ; Voet, H. van der; Roelofs, V.J. ; Roelofs, W. ; Glass, C.R. ; Boer, W.J. de; Kruisselbrink, J.W. ; Hart, A.D.M. - \ 2015
    Food and Chemical Toxicology 79 (2015). - ISSN 0278-6915 - p. 54 - 64.
    residential exposure - modeling framework - dietary
    Risk assessments for human exposures to plant protection products (PPPs) have traditionally focussed on single routes of exposure and single compounds. Extensions to estimate aggregate (multi-source) and cumulative (multi-compound) exposure from PPPs present many new challenges and additional uncertainties that should be addressed as part of risk analysis and decision-making. A general approach is outlined for identifying and classifying the relevant uncertainties and variabilities. The implementation of uncertainty analysis within the MCRA software, developed as part of the EU-funded ACROPOLIS project to address some of these uncertainties, is demonstrated. An example is presented for dietary and non-dietary exposures to the triazole class of compounds. This demonstrates the chaining of models, linking variability and uncertainty generated from an external model for bystander exposure with variability and uncertainty in MCRA dietary exposure assessments. A new method is also presented for combining pesticide usage survey information with limited residue monitoring data, to address non-detect uncertainty. The results show that incorporating usage information reduces uncertainty in parameters of the residue distribution but that in this case quantifying uncertainty is not a priority, at least for UK grown crops. A general discussion of alternative approaches to treat uncertainty, either quantitatively or qualitatively, is included.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.