Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==multi-variable approach
Check title to add to marked list
Data from: Multi-variable approach pinpoints origin of oak wood with higher precision
Akhmetzyanov, L. ; Buras, Allan ; Sass-Klaassen, U.G.W. ; Ouden, J. den; Mohren, G.M.J. ; Groenendijk, Peter ; García-González, Ignacio - \ 2019
dendroprovenancing - earlywood vessels - latewood width - multi-variable approach - region-specific growth patterns - Quercus spp. - wood anatomy - Quercus robur - Quercus petraea - Quercus pyrenaica - Quercus faginea
Aim: Spatial variations of environmental conditions translate into biogeographic growth patterns of tree growth. This fact is used to identify the origin of timber by means of dendroprovenancing. Yet, dendroprovenancing attempts are based on ring-widths measurements, and neglect additional tree-ring parameters. To explore the effect of including additional variables in dendroprovenancing, we investigate whether and, if so, why the incorporation of wood-anatomical parameters can increase the precision of identifying the origin of oak wood. Since such features reflect environmental conditions of different periods – which vary between source regions – we hypothesize that their inclusion allows more precise dendroprovenancing. Location: Europe, Spain. Taxon: Quercus robur L., Quercus petraea (Matt.) Liebl., Quercus faginea Lam., Quercus pyrenaica Willd. Methods: We sampled four oak species resembling a longitudinal and an elevational/continental gradients. We measured multiple tree-ring variables to (1) extract meaningful variables, (2) represent statistical relations among variables, (3) analyse regional-specific growth patterns in individual time series and (4) determine underlying climate-growth relationships. Leave-one-out analyses were used to test whether a combination of selected variables allows dendroprovenancing of a randomly selected tree within the area. Results: A combination of latewood width and earlywood vessels size can be used to pin-point the origin of oak wood with higher precision than latewood width only. Variation in latewood widths appointed the wood to areas across the longitudinal gradient, whereas variation in vessels assigned wood to locations along a latitudinal/topographic gradient. The climatic factors behind these gradients are respectively an East-West gradient in June-July temperature, and a North-South gradient in winter/ spring temperatures. The leave-one-out analyses supported the robustness of the results. Main conclusions: Integration of multiple tree-ring variables in combination with multivariate techniques leads to higher precision in the dendroprovenancing of ring-porous oak species.
Multi-variable approach pinpoints origin of oak wood with higher precision
Akhmetzyanov, Linar ; Buras, Allan ; Sass-Klaassen, Ute ; Ouden, Jan den; Mohren, Frits ; Groenendijk, Peter ; García-González, Ignacio - \ 2019
Journal of Biogeography 46 (2019)6. - ISSN 0305-0270 - p. 1163 - 1177.
dendroprovenancing - earlywood vessels - latewood width - multi-variable approach - Quercus spp. - region-specific growth patterns - wood anatomy

Aim: Spatial variations of environmental conditions translate into biogeographical patterns of tree growth. This fact is used to identify the origin of timber by means of dendroprovenancing. Yet, dendroprovenancing attempts are commonly only based on ring-width measurements, and largely neglect additional tree–ring variables. We explore the potential of using wood anatomy as a dendroprovenancing tool, and investigate whether it increases the precision of identifying the origin of oak wood. Since different tree–ring variables hold different information on environmental conditions prevailing at specific times of the growing season—which vary between source regions—we hypothesize that their inclusion allows more precise dendroprovenancing. Location: Europe, Spain. Taxon: Quercus robur L., Quercus petraea (Matt.) Liebl., Quercus faginea Lam., Quercus pyrenaica Willd. Methods: We sampled four oak species across Northern Spain, i.e. from the Basque country and Cantabria and—in the Basque country—from low to high elevation (topographic/latitudinal gradient). We measured multiple tree–ring variables to (a) extract complementary variables; (b) present statistical relations among them; (c) analyse region-specific variation in their patterns based on time–series of individual trees; and (d) determine underlying climate–growth relationships. Leave-one-out analysis was used to test whether a combination of selected variables allowed dendroprovenancing of a randomly selected tree within the area. Results: A combination of latewood width (LW) and earlywood vessel size was used to pinpoint the origin of oak wood with higher precision than ring width or LW only. Variation in LW pinpointed the wood to east and west areas, whereas variation in vessels assigned wood to locations along a latitudinal/topographic gradient. The climatic triggers behind these gradients are respectively an east–west gradient in June–July temperature and a north–south gradient in winter/spring temperatures. The leave-one-out analyses supported the robustness of these results. Main conclusions: Integration of multiple wood–xylem anatomical variables analysed with multivariate techniques leads to higher precision in the dendroprovenancing of ring-porous oak species.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.