Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 20 / 30

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Data from: Patterns of nitrogen-fixing tree abundance in forests across Asia and America
    Menge, Duncan N.L. ; Chisholm, Ryan A. ; Davies, Stuart J. ; Abu Salim, Kamariah ; Allen, David ; Alvarez, Mauricio ; Bourg, Norm ; Brockelman, Warren Y. ; Bunyavejchewin, Sarayudh ; Butt, Nathalie ; Ouden, Jan den; Jansen, Patrick - \ 2019
    Dryad
    Determinants of plant community diversity and structure - Forest - Smithsonian ForestGEO - legume - symbiosis - nutrient limitation - nitrogen fixation
    Symbiotic nitrogen (N)‐fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N‐fixing trees are well characterised in the Americas, but less well outside the Americas. Here, we characterised the abundance of N‐fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N‐fixing trees was correlated with mean annual temperature and precipitation. Outside the tropics, N‐fixing trees were consistently rare in the forest plots we examined. Within the tropics, N‐fixing trees were abundant in American but not Asian forest plots (~7% versus ~1% of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N‐fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N‐fixing tree abundance between the Asian and American tropics. Synthesis. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N‐fixing trees. By analysing a large dataset of ~4 million trees, we found that N‐fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N‐fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N‐fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought.
    Nitrogen Deposition Maintains a Positive Effect on Terrestrial Carbon Sequestration in the 21st Century Despite Growing Phosphorus Limitation at Regional Scales
    Fleischer, Katrin ; Dolman, A.J. ; Molen, Michiel K. van der; Rebel, Karin T. ; Erisman, Jan Willem ; Wassen, Martin J. ; Pak, Bernard ; Lu, Xingjie ; Rammig, Anja ; Wang, Ying Ping - \ 2019
    Global Biogeochemical Cycles 33 (2019)6. - ISSN 0886-6236 - p. 810 - 824.
    carbon sequestration - land carbon sink - nitrogen deposition - nitrogen fixation - phosphorus limitation - terrestrial ecosystems

    Nitrogen (N) and phosphorus (P) are two dominant nutrients regulating the productivity of most terrestrial ecosystems. The growing imbalance of anthropogenic N and P inputs into the future is estimated to exacerbate P limitation on land and limit the land carbon (C) sink, so that we hypothesized that P limitation will increasingly reduce C sequestered per unit N deposited into the future. Using a global land surface model (CABLE), we simulated the effects of increased N deposition with and without P limitation on land C uptake and the fate of deposited N on land from 1901 to 2100. Contrary to our hypothesis, we found that N deposition continued to induce land C sequestration into the future, contributing to 15% of future C sequestration as opposed to 6% over the historical period. P limitation reduced the future land C uptake per unit N deposited only moderately at the global scale but P limitation increasingly caused N deposition to have net negative effects on the land C balance in the temperate zone. P limitation further increased the fraction of deposited N that is lost via leaching to aquatic ecosystems, globally from 38.5% over the historical period to 53% into the future, and up to 75% in tropical ecosystems. Our results suggest continued N demand for plant productivity but also indicate growing adverse N deposition effects in the future biosphere, not fully accounted for in global models, emphasizing the urgent need to elaborate on model representations of N and P dynamics.

    Patterns of nitrogen-fixing tree abundance in forests across Asia and America
    Menge, Duncan N.L. ; Chisholm, Ryan A. ; Davies, Stuart J. ; Abu Salim, Kamariah ; Allen, David ; Alvarez, Mauricio ; Bourg, Norm ; Brockelman, Warren Y. ; Bunyavejchewin, Sarayudh ; Butt, Nathalie ; Cao, Min ; Chanthorn, Wirong ; Chao, Wei Chun ; Clay, Keith ; Condit, Richard ; Cordell, Susan ; Silva, João Batista da; Dattaraja, H.S. ; Andrade, Ana Cristina Segalin de; Oliveira, Alexandre A. de; Ouden, Jan den; Drescher, Michael ; Fletcher, Christine ; Giardina, Christian P. ; Savitri Gunatilleke, C.V. ; Gunatilleke, I.A.U.N. ; Hau, Billy C.H. ; He, Fangliang ; Howe, Robert ; Hsieh, Chang Fu ; Hubbell, Stephen P. ; Inman-Narahari, Faith M. ; Jansen, Patrick A. ; Johnson, Daniel J. ; Kong, Lee Sing ; Král, Kamil ; Ku, Chen Chia ; Lai, Jiangshan ; Larson, Andrew J. ; Li, Xiankun ; Li, Yide ; Lin, Luxiang ; Lin, Yi Ching ; Liu, Shirong ; Lum, Shawn K.Y. ; Lutz, James A. ; Ma, Keping ; Malhi, Yadvinder ; McMahon, Sean ; McShea, William ; Mi, Xiangcheng ; Morecroft, Michael ; Myers, Jonathan A. ; Nathalang, Anuttara ; Novotny, Vojtech ; Ong, Perry ; Orwig, David A. ; Ostertag, Rebecca ; Parker, Geoffrey ; Phillips, Richard P. ; Abd. Rahman, Kassim ; Sack, Lawren ; Sang, Weiguo ; Shen, Guochun ; Shringi, Ankur ; Shue, Jessica ; Su, Sheng Hsin ; Sukumar, Raman ; Fang Sun, I. ; Suresh, H.S. ; Tan, Sylvester ; Thomas, Sean C. ; Toko, Pagi S. ; Valencia, Renato ; Vallejo, Martha I. ; Vicentini, Alberto ; Vrška, Tomáš ; Wang, Bin ; Wang, Xihua ; Weiblen, George D. ; Wolf, Amy ; Xu, Han ; Yap, Sandra ; Zhu, Li ; Fung, Tak - \ 2019
    Journal of Ecology 107 (2019)6. - ISSN 0022-0477 - p. 2598 - 2610.
    forest - legume - nitrogen fixation - nutrient limitation - Smithsonian ForestGEO - symbiosis

    Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N-fixing trees are well characterised in the Americas, but less well outside the Americas. Here, we characterised the abundance of N-fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N-fixing trees was correlated with mean annual temperature and precipitation. Outside the tropics, N-fixing trees were consistently rare in the forest plots we examined. Within the tropics, N-fixing trees were abundant in American but not Asian forest plots (~7% versus ~1% of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N-fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N-fixing tree abundance between the Asian and American tropics. Synthesis. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N-fixing trees. By analysing a large dataset of ~4 million trees, we found that N-fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N-fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N-fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought.

    Nitrogen fixation does not axiomatically lead to phosphorus limitation in aquatic ecosystems
    Gerven, Luuk P.A. van; Kuiper, Jan J. ; Mooij, Wolf M. ; Janse, Jan H. ; Paerl, Hans W. ; Klein, Jeroen J.M. de - \ 2019
    Oikos 128 (2019)4. - ISSN 0030-1299 - p. 563 - 570.
    eutrophication - nitrogen fixation - R*

    A long-standing debate in ecology deals with the role of nitrogen and phosphorus in management and restoration of aquatic ecosystems. It has been argued that nutrient reduction strategies to combat blooms of phytoplankton or floating plants should solely focus on phosphorus (P). The underlying argument is that reducing nitrogen (N) inputs is ineffective because N2-fixing species will compensate for N deficits, thus perpetuating P limitation of primary production. A mechanistic understanding of this principle is, however, incomplete. Here, we use resource competition theory, a complex dynamic ecosystem model and a 32-year field data set on eutrophic, floating-plant dominated ecosystems to show that the growth of non-N2-fixing species can become N limited under high P and low N inputs, even in the presence of N2 fixing species. N2-fixers typically require higher P concentrations than non-N2-fixers to persist. Hence, the N2 fixers cannot deplete the P concentration enough for the non-N2-fixing community to become P limited because they would be outcompeted. These findings provide a testable mechanistic basis for the need to consider the reduction of both N and P inputs to most effectively restore nutrient over-enriched aquatic ecosystems.

    Data from: Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses
    Velzen, R. van; Holmer, R. ; Bu, F. ; Rutten, L.J.J. ; Zeijl, A.L. van; Liu, W. ; Santuari, L. ; Cao, Q. ; Sharma, Trupti ; Shen, D. ; Roswanjaya, Yuda ; Wardhani, T. ; Seifi Kalhor, M. ; Jansen, Joelle ; Hoogen, D.J. van den; Gungor, Berivan ; Hartog, M.V. ; Hontelez, Jan ; Verver, J.W.G. ; Yang, Wei-Cai ; Schijlen, E.G.W.M. ; Repin, Rimi ; Schilthuizen, M. ; Schranz, M.E. ; Heidstra, R. ; Miyata, Kana ; Fedorova, E. ; Kohlen, W. ; Bisseling, A.H.J. ; Smit, S. ; Geurts, R. - \ 2018
    Wageningen University & Research
    comparative genomics - copy number variation - evolution - nitrogen fixation - symbiosis - Parasponia andersonii - Parasponia rigada - Parasponia rugosa - Trema levigata - Trema orientalis - Trema tomentosa
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION. Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants
    Root and nodule : lateral organ development in N2-fixing plants
    Xiao, T.T. - \ 2015
    Wageningen University. Promotor(en): Ton Bisseling, co-promotor(en): Rene Geurts; Henk Franssen. - Wageningen : Wageningen University - ISBN 9789462572768 - 198
    medicago - wortelknolletjes - endosymbiose - symbiose - mycorrhizae - stikstoffixatie - plantenontwikkeling - moleculaire biologie - medicago - root nodules - endosymbiosis - symbiosis - mycorrhizas - nitrogen fixation - plant development - molecular biology

    Plants are sessile organisms. This characteristic severely limits their ability of approaching nutrients. To cope with this issue, plants evolved endosymbiotic relationships with soil fungi to extend their interface with surrounding environment. In case of arbuscular mycorrhizae (AM) fungi this occurred about 400 million years ago. The AM fungi can interact with most angiosperms. In this symbiotic relationship, the plant get nutrients, especially phosphate, from the fungi, and plants provide carbohydrates to the fungi in return. About 60 million years ago, a group of plants evolved N2-fixing nodule symbiosis. This includes interactions of legumes plants with rhizobium bacteria and actinorhizal plants with Frankia bacteria. Currently, all plant species that are able to establish a nodule symbiosis belong to the Rosid I clade. In the nodule symbioses the bacteria produce ammonia and the plant provides carbohydrates to the bacteria.

    In the root nodule symbiosis, the nitrogen fixing bacteria are hosted in the cell of the root nodule. Although the function and structure of the root nodule are different from the other plant organs, it does share some features with other organs, especially the lateral root. To get further insight into the similarities and differences between root nodule and lateral root, I made use of the model legume (Medicago truncatula) and the non-legume Parasponia (Parasponia andersonii) that is the only genus outside the legumes that forms nodules with rhizobium.

    In Chapter 1, I will give a general introduction on the process of root nodule formation in legume plants. I will mainly focus on nodule organogenesis and the plant hormones that are known to be important for this process. Root nodules are supposed to have a close relationship with lateral roots. Therefore a comparison between lateral root and root nodule development will be included in this introduction.

    Lateral root development has especially been studied in in Arabidopsis. To be able to compare the root and root nodule developmental process, especially at the early stages, a Medicago lateral root development fate map has been made. This will be described in Chapter 2 and showed that in addition to the pericycle, endodermis and cortex are also mitotically activated during lateral root formation. Pericycle derived cells only form part of the stem cell niche as endodermis derived cells also contribute to this.

    In Chapter 3, a Medicago root nodule fate map is presented. In this Chapter, the contribution of different root cell layers to the mature nodule will be described. A set of molecular markers for root tissue, cell cycle and rhizobial infection have been used to facilitate this analysis. The fate map showed that nodule meristem originates from the third cortical layer and many cell layers of the base of the nodule are directly derived from cells of the inner cortical layers, root endodermis and pericycle. The inner cortical cell layers form about 8 cell layers of infected cells while the root endodermis and pericycle derived cells forms the uninfected tissues that are located at the base of the mature nodule. Nodule vascular is formed from the part of the primordium derived from the cortex. The development of primordia was divided in 6 stages. To illustrate the value of this fate map, a few published mutant nodule phenotypes are re-analyzed.

    In Chapter 4, the role of auxin at early stages of Medicago nodule formation is studied. In this chapter auxin accumulation is studied during the 6 stages of primordium development. It is studied by using DR5::GUS as an auxin reporter. Auxin accumulation associates with mitotic activity within the primordium. Previously, it has been postulated by theoretical modelling that the accumulation of auxin during nodulation is induced by a local reduction of PIN (auxin efflux carriers) levels. We tested this theory, but this was hampered due to the low level of PIN proteins in the susceptible zone of the root. It is still possible that auxin accumulation is initiated by a decrease of PIN levels. However, the level of 2 PIN already increase before the first divisions are induced. In young primordia they accumulate in all cells. At later stages PINs mainly accumulate at the nodule periphery and the future nodule meristem. The subcellular position of PINs strongly indicates they play a key role in the accumulation of auxin in primordia.

    Previous studies showed that a group of root apical meristem regulators is expressed in the nodule meristem. In Chapter 5, we tested whether the Medicago nodule meristem expresses PLETHORA genes that are expressed in the root meristem. These PLETHORAs were functionally analysed, by using RNAi approach using a nodule specific promoter. Knockdown of PLETHORAs expression hampers primordium formation and meristem growth. Hence, we conclude rhizobium recruited key regulators of root development for nodule development.

    In Chapter 6, we first introduced the non-legume lateral root and nodule fate maps by using Parasponia. In Parasponia nodules the nodule central vascular bundle is completely derived from the pericycle similar as its lateral roots. The nodule infected cells were shown to be derived from cortex. Together with the data obtained in this thesis, this Chapter further discussed several developmental aspects of the different lateral root organs. Especially, it focused on the vasculature and meristem formation of legume and non-legume nodules.

    Soil and plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns
    Sagrilo, E. - \ 2014
    Wageningen University. Promotor(en): Thomas Kuijper; Ellis Hoffland. - Wageningen : Wageningen University - ISBN 9789462571679 - 128
    organisch bodemmateriaal - grondverbeteraars - koolstofvastlegging in de bodem - vesiculair-arbusculaire mycorrhizae - bodemvruchtbaarheid - glycine max - biochar - stikstoffixatie - kooldioxide - emissie - brazilië - soil organic matter - soil amendments - soil carbon sequestration - vesicular arbuscular mycorrhizas - soil fertility - glycine max - biochar - nitrogen fixation - carbon dioxide - emission - brazil

    Soil and plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns

    Edvaldo Sagrilo

    Summary

    Pyrogenic organic matter (PyOM), also known as biochar, is the product of biomass combustion under low oxygen concentration. There is currently a growing interest in research on the use of PyOM as a soil amendment, inspired by the existence of highly fertile, PyOM-rich anthropogenic soils in the Amazon basin. The presence of PyOM in these so-called Amazonian Dark Earths (ADE) in quantities larger than in the non-anthropogenic surrounding soils is considered one of the main reasons for their high fertility.

    Soil additions of PyOM have been suggested to increase soil fertility and crop yields, simultaneously providing additional important environmental services. The offset of CO2 emissions through sequestration of a larger pool of recalcitrant soil organic carbon (SOC) is one of these services. This would at the same time sustain soil microbial activity, which is directly associated to soil quality, for instance, nutrient cycles and plant growth. This multiple win scenario suggests that the addition of PyOM to the soil would be the solution for the “carbon dilemma”. The dilemma states that the main biological benefits from soil organic matter are a consequence of its decay. Therefore, it is unlikely that increased C sequestration and the benefits from its decay can be simultaneously maximized. Rather than win-win, PyOM would then also be subjected to inevitable trade-offs.

    Additions of PyOM can modify the turnover rate of native SOC by either accelerating or decelerating its decomposition through a mechanism known as priming. Although positive priming by PyOM has been reported, negative priming has also been found. The higher amount of non-pyrogenic C in ADE, compared to non-anthropogenic surrounding soils has been considered evidence that PyOM can stabilize SOC in the long-term. A complicating issue in studies is that short-term increases in CO2 emission can be due to decomposition of labile PyOM fractions, erroneously suggesting positive priming of SOC. Addition of PyOM can also lead to modifications in the microbial activity and assemblages. Changes in microbial populations can have impacts on their functionality, favouring mutualistic root symbioses such as the arbuscular mycorrhizal fungal (AMF) symbiosis and the rhizobial symbiosis with legumes that is responsible for biological nitrogen fixation (BNF). Although soil amendments with PyOM can stimulate AMF and BNF, results are contrasting and mechanisms are not clear. Most studies of PyOM effects on SOC and on mutualistic root symbioses are from short-term experiments, often conducted in greenhouse or laboratory. Although such studies provide insights in potential factors driving changes in SOC and symbiotic relationships in PyOM-amended soils, they do not assess changes under realistic conditions over periods of time longer that one or a few cropping cycles. Therefore, there is still a gap in our understanding regarding the duration and magnitude of effects over time under field conditions and possible mechanisms involved. This thesis addresses these gaps.

    The aim of this research was to provide a better understanding of interactions between PyOM and SOC and the factors controlling symbiotic patterns in a tropical soil amended with PyOM. To reach this aim, I combined greenhouse and field studies. I also used meta-analytic methods in order to quantitatively synthesize data in literature.

    In Chapter 2, I combined the results of 46 studies in a meta-analysis. I investigated changes in CO2 emission patterns from an array of PyOM-amended soils and identified the causes of these changes and the possible factors involved. I showed an overall increase of 29% in CO2 emission from PyOM-amended soils. Such increases were only evident in soils amended with a PyOM-C (PyC):SOC ratio >2. These data are consistent with the hypothesis that increased CO2 emission after PyOM addition is additive and mainly derived from PyOM’s labile C fractions rather than from SOC. Therefore, positive priming is not a main driver of increases in CO2 emission in PyOM-amended soils. This PyC:SOC ratio provided the best predictor of increases in CO2 production after PyOM addition to soil. This meta-analysis indicates (i) the importance of taking into account the amount of applied PyC in relation to SOC for designing future decomposition experiments and that (ii) the recalcitrance of PyOM in soil-PyOM mixtures may be less than usually assumed.

    A technical problem of separating PyOM-induced priming on SOC from other non-additive interactions is the uncertainty regarding the origin of the respired CO2 (whether from SOC or PyOM). This issue can only be solved with the use of isotopes. In a field study (Chapter 3), I quantified changes in the PyOM and SOC stocks over four soybean cropping cycles (CC) in a sandy Ferralsol, previously supporting a vegetation with C4 plants, amended with different rates of PyOM (0, 5, 10, 20 and 40 Mg ha-1). The PyOM was produced from C3 woody species using traditional pyrolysis methods employed in Northeast Brazil. I used 13C isotopic analysis to discriminate the origin of the C in the soil and quantify the decomposition rates of native SOC and PyOM. I showed that decomposition of traditionally produced PyOM is faster (25-60% within first year) than normally assumed (10-20% within 5-10 years), which was higher than that of native SOC (5-14%). The data indicate preferential decomposition of PyOM compared to native SOC. The intensity of that effect depends on the rate of PyOM applied to the soil. Only on the longer term (>1 yr) addition of PyOM seems to stabilize SOC.

    In Chapter 4 I explored mechanisms controlling AMF activity and crop yield in PyOM-amended soils through the use of path analysis. I tested the effects of PyOM rates and P fertilization on soybean root colonization by AMF, soil P and plant performance over four cropping cycles (CCs). Data showed a major effect of CC and P, as well an interaction effect of PyOM x CC on mycorrhizal colonization. There was a linear decrease in root colonization by AMF in CC1 with increasing PyOM rates in contrast to a consistent linear increase in CC4. Plant performance was mainly affected by CC, but a significant interactive effect of PyOM x P was also observed on grain yield. Grain yield was highest at high PyOM rates (20 and 40 Mg ha-1) in the P-fertilized treatments in CC4. Soil pH increased in CC1 with increasing PyOM rates, but no effects were observed in CC4. Path analysis indicated that PyOM effects on root colonization by AMF were not mediated by changes in soil pH or P content. My data are consistent with the hypothesis that interference of PyOM in signalling processes is an important driver of change in AMF activity and that positive effects of PyOM on AMF and crop yield develop with time.

    In Chapter 5, I assessed the effects of PyOM application rates and P fertilization on BNF in soybean inoculated with Bradyrhizobium japonicum over four cropping cycles. Again I observed that CC had a significant main effect on most dependent variables, while PyOM was not a significant source of variation. There was a significant PyOM × CC interaction effect on shoot N concentration. In CC1 shoot N concentration after application of 5 Mg PyOM was significantly lower than that of plants grown on plots to which 10 or 20 Mg PyOM was applied. In CC4 shoot N concentration was not affected by PyOM. The major effect of CC was explained through changes in nutrient management, more specifically the addition of micronutrients in CC3 and CC4. Alleviation of micronutrient deficiency increased BNF and also resulted in a positive effect of P on BNF. I conclude that under conditions of adequate management, PyOM application does not improve BNF in soybean.

    In Chapter 6 (General Discussion) I synthesize the findings of the previous chapters and use data from additional greenhouse and litterbag field experiments to integrate the results. Data from Chapters 2 and 3 show that if any positive priming occurs due to PyOM addition, it is a small short-term event and does not lead to significant losses of native SOC in the long-term. This was confirmed by data from a 2 yr litterbag experiment, which showed no interaction between decomposition of PyOM and fresh organic matter.

    Stability of SOC has been considered an ecosystem property rather than a consequence of recalcitrance, but this definition has not yet been extended to PyOM. In this thesis I demonstrated that stability of PyOM can also be influenced by the soil environment. In order to link PyOM effects to SOC and on root symbioses, I performed path analysis integrating root colonization by AMF, SOC content and Ndfa in one model. We found no significant path coefficients linking AMF and BNF. The model indicated a significant positive path coefficient linking AMF root colonization and SOC in CC4, but not in CC1. The data suggest that PyOM may increase SOC stability through increased AMF activity. Soil aggregation and C sequestration are tightly correlated with abundance of AMF in the soil. I propose that the same mechanism through which AMF stabilizes native SOC may also positively influence PyOM stabilization in the long-term.

    In conclusion, I have shown that main beneficial effects of PyOM on AMF and crop yield develop with time, but in well-managed soils increased crop yield is not a direct consequence of increased AMF due to PyOM addition. Finally, although PyOM additions represent an effective form of sequestering C, positive effects of PyOM on crop yield are likely to occur after partial decomposition of PyOM. Therefore, although some benefits of adding PyOM can be simultaneously obtained (C sequestration and increased crop yield), they cannot be simultaneously maximized. This means that the carbon dilemma can only be partially solved by adding PyOM to the soil.

    Transcriptional regulation of nodule development and senescence in Medicago truncatula
    Karmarkar, V.M. - \ 2014
    Wageningen University. Promotor(en): Ton Bisseling, co-promotor(en): Rene Geurts. - Wageningen : Wageningen University - ISBN 9789462570214 - 110
    medicago truncatula - plantenontwikkeling - veroudering - wortelknolletjes - stikstoffixatie - genexpressie - symbiose - transcriptie - transcriptiefactoren - medicago truncatula - plant development - senescence - root nodules - nitrogen fixation - gene expression - symbiosis - transcription - transcription factors
    Comparative and functional analysis of NODULATION SIGNALING PATHWAY 1 (NSP1) and NSP2 in rice and Medicago
    Liu, W. - \ 2013
    Wageningen University. Promotor(en): Ton Bisseling, co-promotor(en): Rene Geurts. - S.l. : s.n. - ISBN 9789461736369 - 147
    oryza - medicago - knobbelvorming - symbiose - genen - rhizobium - wortelknolletjes - stikstoffixatie - oryza - medicago - nodulation - symbiosis - genes - rhizobium - root nodules - nitrogen fixation
    The formation of endosymbiotic membrane compartments: membrane identity markers and the regulation of vesicle trafficking
    Ivanov, S. - \ 2012
    Wageningen University. Promotor(en): Ton Bisseling, co-promotor(en): Elena Fedorova; Erik Limpens. - S.l. : s.n. - ISBN 9789461733436 - 121
    planten - rhizobium - stikstof - stikstoffixatie - medicago - endosymbiose - celmembranen - blaasjes - biochemische omzettingen - moleculaire biologie - wortels - mycorrhizae - plants - rhizobium - nitrogen - nitrogen fixation - medicago - endosymbiosis - cell membranes - vesicles - biochemical pathways - molecular biology - roots - mycorrhizas

    In symbiosis of plants and arbuscular mycorrhizal fungi as well as in rhizobium-legume symbiosis the microbes are hosted intracellularly, inside specialized membrane compartments of the host. These membrane compartments are morphologically different but similar in function, since they control the exchange of compounds between host and its microsymbiont thus forming a highly specialized symbiotic interface. These are the arbuscules, containing highly branched fungal hyphae, and organelle-like symbiosomes containing rhizobium bacteria. Recent studies have markedly extended our insight in the evolution of the signaling mechanism underlying the formation of these symbiotic interfaces. These studies strongly suggest that rhizobium co-opted the complete signaling mechanism (including lipo-oligosaccharides signal molecules) from the more ancient AM fungi symbiosis. Further, in plant species (Parasponia) where rhizobium nodulation evolved rather recent and independent from legumes, the same lipo-oligosaccharide receptor is essential for the formation of the rhizobium symbiotic interface as well as arbuscules. Therefore it seems likely that rhizobium also co-opted the cellular mechanism controlling arbuscule formation to form a rhizobium symbiotic interface. This would imply that even after co-evolution in legumes the key regulators involved in the formation of these interfaces are similar or even identical.
    In this thesis I have shown that rhizobium symbiosis shares with AM symbiosis molecular and cell biological mechanisms that control symbiotic interface formation. I identified a plant exocytotic pathway marked by two highly homologous vesicle associated membrane proteins (VAMP) that control the formation of the symbiotic interface in both symbioses. RNAi of these two Medicago VAMP genes did not affect non-symbiotic plant development nor nodule formation. However, it hampered the formation of cell wall free regions at infection threads, and therefore blocks symbiosome formation. Further arbuscule formation was blocked, whereas root colonization was not affected. By identifying these VAMPs as common symbiotic regulators in secretory vesicle trafficking, I postulated that during evolution of rhizobium symbiosis pre-existing cellular mechanisms of the AM fungal symbiosis have been co-opted. These findings also revealed a primary role of exocytosis in symbiosome formation and allowed to postulate the apoplastic nature of symbiosome. Using identity markers of endocytotic compartments of plant cell (early endosome and late endosome) such as small GTPases belonging to the Rab family and SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins, I have shown that they never occur on symbiosome membranes at any stage of symbiosome formation and development. This makes untenable long-standing hypothesis that symbiosomes originate from endocytosis-like process and represent endocytic (vacuolar) compartments. Instead symbiosomes have an apoplastic nature. Although symbiosomes have an apoplastic nature they acquire the vacuolar marker MtRab7 when they reach an elongated stage. However, vacuolar SNAREs which execute fusion of membranes are not present on functional symbiosomes, but they do appear on symbiosome membranes at the onset of senescence when symbiosomes are turned into a lytic compartment. Therefore I postulate that the acquisition of Rab7 primes the symbiosomes for degradation by the host. By this the host has full control over its microsymbiont.
    The finding that rhizobium symbiosis has co-opted the signaling mechanism as well as cellular mechanism from AM fungi symbiosis to facilitate an intracellular life style, has major implications for strategies to transfer the nodule symbiosis to non-legume crops. This is a “dream” that is already about a century old. The AM fungal symbiosis is far more ancient than the rhizobial symbiosis. It is also wide spread in the plant kingdom and almost 80% of plant species can establish an AM symbiosis. This implies that plants which are able to interact with AM fungi contain in principle the genes that are necessary for the intracellular accommodation of rhizobium. So the question is no longer why the rhizobium-legume symbiosis is specific for legumes, but why non-legumes are not yet able to establish this symbiosis?

    Co-option of pre-existing pathways during Rhizobium-legume symbiosis evolution
    Lillo, A. - \ 2012
    Wageningen University. Promotor(en): Ton Bisseling, co-promotor(en): Rene Geurts. - S.l. : s.n. - ISBN 9789461733443 - 151
    rhizobium - fabaceae - symbiose - evolutie - stikstoffixatie - wortels - fylogenetica - genomen - medicago - eerste wortels - rhizobium - fabaceae - symbiosis - evolution - nitrogen fixation - roots - phylogenetics - genomes - medicago - root primordia

    Fixed nitrogen is one of the most limiting factors for plant growth. One of the most important nitrogen-fixing systems is the rhizobium root nodule symbiosis. In this Thesis I have studied the legume-rhizobium symbiosis, starting from the idea that part of pre-existing signalling pathways have been co-opted during evolution of this mutualistic interaction. Gene duplications -of which a whole genome duplication (WGD) is the most dramatic variant- are known as important driving forces in evolution of new traits. 56 to 65 million years ago an ancestral legume species within the Papilionoidae subfamily (Papilionoids) experienced a WGD event and subsequently gave rise to several major phylogenetic crowns. I hypothesize that among the orthologous gene pairs maintained are genes that are essential for nodulation. I adopted a phylogenetic strategy to identify new candidate genes involved in the legume-Rhizobium symbiosis
    In a targeted approach, we focussed on the cytokinin phosphorelay pathway. This resulted in the identification of one gene pair encoding type-A Response Regulators (RRs) with a positive regulatory role for these proteins in root nodule formation. Yet the illustrated role for MtRR9 and MtRR11 in rhizobial symbiosis provides a proof of principle of this method to identify gene pairs involved in legume specific characters. An unbiased search for paralogous gene pairs revealed two conserved gene duplications in the NADPH oxidases gene family. NADPH oxidases are reactive oxygen species (ROS) producing enzymes. We identified two sets of duplicated genes that have been maintained after the Papilionoid specific WGD and we show that MtRBOHA and MtRBOHG are redundant, yet essential during symbiosis.
    Moreover, although it is commonly believed that exclusively pericycle cells give rise to the lateral root primordium, similar as seen in Arabidopsis thaliana, we provide morphological evidence that in the studied legume species this is not the case. In both, Lotus and Medicago, also root cortical cell divisions occur during lateral root formation. Furthermore, we found a striking correlation in the cell layers that are recruited during lateral root and nodule primordium formation. This supports the hypothesis that at least parts of the lateral root developmental program have been recruited during evolution of symbiotic root nodules.

    Problems and opportunities of wetland management in Rwanda
    Nabahungu, N.L. - \ 2012
    Wageningen University. Promotor(en): Leo Stroosnijder, co-promotor(en): Saskia Visser. - S.l. : s.n. - ISBN 9789085859246 - 134
    wetlands - landbouw - landbouw bedrijven - gewasproductie - voedingsstoffen - stikstoffixatie - middelen van bestaan - rwanda - wetlands - agriculture - farming - crop production - nutrients - nitrogen fixation - livelihoods - rwanda

    The aim of this research was to identify problems and opportunities regarding management of wetlands in Rwanda, with a focus on their agricultural use. In Rwanda cultivated wetlands cover 148,344 ha and they play an important role in supporting farmers’ livelihood through agriculture. This thesis reveals the extent to which degradation of wetlands negatively affects individuals, households, communities, the national economy and even potentially the greater hydrology of a region. Cyabayaga and Rugeramigozi wetlands were selected as representatives for agricultural wetlands. The rice in Cyabayaga was the largest contributor to household income with $ 1045 per household per season whereas vegetables cultivated in the dry season in Rugeramigozi have high potential as cash crops. Nutrient balances in wetland fields are influenced by agricultural potential, farming system, access to resources, gross margin, size of livestock herd and farmers resource endowment. The marketability of the crops is critical factor in the decision to invest in soil fertility improvement. Legumes and maize yields were lowest on the hillside plots compared to wetlands. Fertilizer application increased grain yield of both legumes and maize and nitrogen fixation, the highest yield was observed in the treatment combining organic and inorganic fertilizers. Maize yield after legume was higher than continuous maize production. The nitrogen balance was negative in both sites at all landscape positions. Findings of this study stress the need of integrated watershed management for improved wetland management.

    De kracht van de stikstofbinders
    Giller, K.E. ; Bisseling, T. - \ 2012
    WageningenWorld 2012 (2012)1. - ISSN 2210-7908 - p. 30 - 37.
    peulgewassen - stikstoffixatie - wortelknolletjes - stikstofbindende bacteriën - rhizobium - veldgewassen - afrika - legumes - nitrogen fixation - root nodules - nitrogen fixing bacteria - rhizobium - field crops - africa
    Hoogleraar Ken Giller propageert onder Afrikaanse boeren het gebruik van peulvruchten. Die hebben dankzij hulp van bacteriën geen stikstofmeststof nodig. In Wageningen onderzoekt hoogleraar Ton Bisseling de finesses van deze symbiose.
    Vlinderbloemigen brengen bemesting in evenwicht
    Holwerda, J. ; Wel, C. van der; Sukkel, W. - \ 2008
    Wageningen : Wageningen UR (BioKennis Bericht : Akkerbouw en vollegrondsgroente ) - 4
    biologische landbouw - bodemvruchtbaarheid - organische stikstof - stikstoffixatie - peulgewassen - luzerne - rotaties - groenbemesters - grasklaver - vollegrondsteelt - organic farming - soil fertility - organic nitrogen - nitrogen fixation - legumes - lucerne - rotations - green manures - grass-clover swards - outdoor cropping
    Vlinderbloemigen vormen de stikstofbron voor de biologische landbouw. Dit omdat ze in staat zijn stikstof uit de lucht te binden. Voor een duurzame biologische akkerbouw en de groenteteelt zijn ze daarom onontbeerlijk, evenals voor de veehouderij. Uiteindelijk is ook de stikstof uit dierlijke mest in eerste instantie via vlinderbloemigen gebonden.
    Exploring socio-ecological niches for legumes in western Kenya smallholder farming systems
    Ojiem, J.O. - \ 2006
    Wageningen University. Promotor(en): Ken Giller, co-promotor(en): Nico de Ridder; B. Vanlauwe. - [S.l.] : S.n. - ISBN 9789085045137 - 169
    peulgewassen - aanpassingsvermogen - biofysica - sociale economie - kenya - heterogeniteit - economische analyse - stikstoffixatie - productiviteit - agro-ecosystemen - legumes - adaptability - biophysics - socioeconomics - kenya - heterogeneity - economic analysis - nitrogen fixation - productivity - agroecosystems
    Keywords: adaptability, agro-ecosystems, biophysical and socio-economic heterogeneity, economic benefits, N2-fixation, productivity.

    This thesis explores the potential of using herbaceous and grain legume species to improve soil fertility and farm productivity in the heterogeneous smallholder farming systems of westernKenya. Poor soil fertility is responsible for the limited productivity of the westernKenyasmallholder farming systems. Although legumes have the potential for improving productivity, their sustainable use is impeded by the high degree of biophysical and socio-economic heterogeneity that characterizes the farming systems. The socio-ecological niche concept was proposed as a framework for facilitating the identification and integrated assessment of biophysical and socio-economic factors with potential influence on the choice of sustainable legume technologies for smallholder farmers.

    The utility of the socio-ecological niche concept was tested through on-farm experiments and socio-economic surveys in westernKenya. The on-farm experiments were conducted across three major agro-ecological zones (AEZ), and under different soil fertility conditions, to assess legume emergence, survival, nodulation, diseases tolerance, grain yield, biomass production, atmospheric N 2 -fixation and net N contribution to soil N fertility. In addition, the economic benefits of growing grain and green manure legumes in rotation with maize were assessed to determine how they are influenced by agro-ecological conditions and within farm soil fertility heterogeneity. Socio-economic surveys characterized farmer legume production objectives, as well as socio-cultural, economic and institutional factors with potential impact on the use of legume technologies by westernKenyasmallholder farmers. The biophysical and socio-economic factors were integrated and analysed to identify legume species for different farmer resource endowment groups, agro-ecological conditions and field typologies. Analysis of the alternative legume production scenario was undertaken, to test the utility of the socio-ecological niche concept. 

    Legume grain yield, total dry matter production (TDM) and atmospheric N 2 -fixation increased with rainfall and soil fertility status. TDM ranged from 0.1 Mg ha -1 to 13.9 Mg ha -1 , and was generally less for the grain legumes, compared with the green manure and forage legumes. However, soyabean and groundnut showed greater potential among the grain legumes, producing up to 4.6 Mg ha -1 TDM. While the legume species and varieties showed capacity to form viable nodules with naturally occurring rhizobia, application of P was essential for good nodulation. 

    Generally, the species fixed 23-90% of their N requirements in AEZ 1 (Museno) and AEZ 2 (Majengo), compared to 7-77% of their N requirements in AEZ 3 (Ndori). However, N 2 -fixation by the green manure species (29-232 kg N ha -1 ) was greater than that by grain legume species (3-172 kg N ha -1 ). Net N input by the grain legumes was negatively correlated with grain yield, and legume grain yields of above 1 Mg ha -1 resulted in negative net N inputs. Economic benefits of fitting legumes into the smallholder cropping systems in rotation with maize varied with rainfall, soil fertility and legume species. Yearly maize productivity of these rotations (short and long rains crops) decreased by 47%, from AEZ 1 to AEZ 3, and by 33%, from fertile fields to least fertile fields. Although continuous maize fertilized with both N and P had the largest total maize productivity, returns to land and labour were greatest with grain legume-maize cropping systems. In AEZ 2, where moisture was not limiting during the experimentation period, mean returns to land for grain legume-maize cropping systems were US$ 879 ha -1 , compared with US$ 533 for green manure-maize, and US$ 459 for continuous maize with N and P.

    Rainfall, soil fertility, land, labour, and livestock ownership were identified as the most important factors influencing the choice of appropriate legumes for the smallholder socio-ecological niches. The analysis of the current legume production situation showed that the medium and the low resource endowed farmers were food insecure due to a combination of land and labour scarcity. However, when alternative legumes species selected according to the socio-ecological niche concept were used, maize self-sufficiency increased by 21-48%. This study demonstrated the utility of the socio-ecological niche concept as a useful tool for facilitating the integration of legumes into the westernKenyasmallholder farming systems to improve soil fertility and farm productivity.
    Onderzoek vruchtwisseling: geen bemesting snijmaïs na scheuren van gras-klaver
    Boer, H.C. de - \ 2005
    V-focus 2 (2005)dec. - ISSN 1574-1575 - p. 30 - 31.
    maïs - zea mays - graslandbeheer - klavers - zaadmengsels - stikstoffixatie - mineralisatie - bodemkwaliteit - bemesting - maize - zea mays - grassland management - clovers - seed mixtures - nitrogen fixation - mineralization - soil quality - fertilizer application
    In 2002 is op het biologisch praktijkcentrum Aver Heino onderzoek gestart naar de effecten van gras-klaver in vruchtwisseling en snijmaïs in continuteelt op de stikstofbenutting en bodemkwaliteit. Het onderzoek loopt naar verwachting tot 2012 en wordt gefinancierd uit het LNV-programma '100 procent biologische mest'.
    Uitwisselen van teelten helpt kwekers verder : biologische teelt
    Pronk, A.A. ; Reuler, H. van - \ 2004
    De Boomkwekerij 17 (2004)9. - ISSN 0923-2443 - p. 12 - 13.
    houtachtige planten als sierplanten - nematoda - stikstoffixatie - uitspoelen - teeltsystemen - tagetes - gewasbescherming - biologische landbouw - ornamental woody plants - nematoda - nitrogen fixation - leaching - cropping systems - tagetes - plant protection - organic farming
    Beschrijving van ontwikkelingen in de biologische teelt van boomkwekerijgewassen. Genoemd worden: biologische bestrijding van aaltjes met tagetes; tussengewas als vanggewas om uitspoelen van stikstof te voorkomen
    Adapting to change in banana-based farming systems of northwest Tanzania: the potential role of herbaceous legumes
    Baijukya, F.P. - \ 2004
    Wageningen University. Promotor(en): Ken Giller, co-promotor(en): Nico de Ridder. - Wageningen : Wageningen University - ISBN 9789085040941 - 192
    musa - bananen - fabaceae - peulgewassen - zea mays - maïs - stikstoffixatie - landbouwplantenteelt - musa - bananas - fabaceae - legumes - zea mays - maize - nitrogen fixation - crop husbandry
    Keywords: Land use changes; Herbaceous legumes; Adoptability; N 2 -fixation; Residual effect; Legume management; Exploration of options, Nutrient depleted soils.

    The banana-based farming system inBukoba District,Tanzania, has been in existence for over 300 years. At present, banana productivity in homegardens is declining largely due to the decline in soil fertility, which in many years was counteracted by the availability of manure. The grazing land is being converted to crop fields and other uses. Crop fields have in part, assumed the role of grazing land of providing for fodder to the few cattle kept today, which is not sustainable in many years. This thesisexplores opportunities for integrating herbaceous legumes in the farming system, to act as a engine to keep maintain the farming system by providing fodder to the cattle (hence manure for use in the home gardens) and improvement the fertility of soils of annual crop fields as improved fallows.The area of grasslands was shown to have decreased over 50 years by 40% whereas the area of annual crop fields increased by 225%. Encroach on grasslandreduced the ability of farmers to restore the fertility of their soils as possibilities to keep livestock, thus the supply of manure diminished.This had a consequence on nutrient balances where by the home gardens receiving manure, had positive balances of N, P and K whereas the home gardens receiving no manure had negative nutrient balances. Nutrient balances of annual crops were negative particularly with maize, indicating that they are vulnerability to impoverishment.Field experiments showed that the biomass, N accumulation and N 2 -fixation varied among the legume species. The performance of legumes was regulated more by the soil N and the soil pH. The non-forage legumes species Tephrosia candida , Crotalaria grahamiana and the forage species Mucuna pruriens and Macrotyloma axillare performed better among the tested legumes, and were selected by farmers on the basis of biomass yield, weed suppression and tolerance to pest and diseases. Laboratory experiments showed that the rate of N release from decomposing legume residues depended on the quality [(polyphenols + lignin)-to-N ratio, lignin-to-N ratio and lignin content] of residues, whereby residues with low (polyphenols + lignin)-to-N ratio, lignin-to-N ratio or lignin contents decomposed faster. Maize yield doubled or tripled when legume residues were applied though the yield response to legume residues was limited when compared with the application of the recommended rate of mineral N fertilisers (50 kg N ha -1 ). It was further observed that, in short term, application of large quantities of legume residue (above 2 Mg ha -1 ) does not add to significant higher maize production. In the degraded soils, the biomass yield and N accumulation of legume species increased by 100% when established with farmyard and had higher residual effect (80%) on the yield of the subsequent maize. Mulching with legume residues was the best option to apply legume residues as it suppressed weeds in the maize crop and had higher labour productivity. Field experiment with farmers showed that the growing legumes as improved fallows increase maize production and maintained positive N balance. However, growing legumes for fodder was in conflict with maize production and N balance of annual crop fields. The model experiments with a multiple goal liner programming (MGLP) model showed that legumes can act asaengine to keep maintain the farming system by providing fodder to the cattle, hence manure to the homegardens and improvement the fertility of soils of annual crop fields as improved fallows. Farmers have different preferences on legumes and choice of legumes to be introduced in the farming system should be based on farmer production objectives. The main policy implication of the findings is that promotion of legumes is best approached by taking the socio-economic systems into account. These include securing other farm inputs and marketing of farm produce by reliable and attractive markets.
    Nitrogen Cycling in Agroforestry Systems of Sub-humid Zimbabwe: Closing the loop
    Chikowo, R. - \ 2004
    Wageningen University. Promotor(en): Ken Giller, co-promotor(en): Peter Leffelaar; P. Mapfumo. - Wageningen : S.n. - ISBN 9789058089861 - 116
    agroforestrysystemen - stikstofkringloop - braaksystemen - verbeterde braak - stikstoffixatie - uitspoelen - mineralisatie - stikstof - zimbabwe - agro-ecosystemen - agroforestry systems - nitrogen cycle - fallow systems - improved fallow - nitrogen fixation - leaching - mineralization - nitrogen - zimbabwe - agroecosystems
    Keywords: improved fallows, biological N 2 -fixation, nitrogen cycling, nitrate leaching, oxide emissions, N mineralization -immobilization, granitic sands

    This thesis focuses on nitrogen: its acquisition in cropping systems through biological N 2 -fixation and subsoil capture, its release by legume prunings and litter, its use by maize and its loss through leaching and as nitrous oxide gas. The context of the study is improved fallows using leguminous trees/shrubs on a sandy clay loam soil under sub-humid conditions inZimbabwe.

    Two-year legume fallows of Sesbania Sesban, Acacia angustissima and Cajanuscajan were evaluated for their residual N effects on two subsequent maize crops under minimum and conventional tillage management. The proportion of N 2 -fixed in litter was 56, 55, 84 and 58 % for Acacia, Sesbania , Cajanus, and cowpea, respectively, resulting in inputs of biologically fixed N of 122, 84, 97 and 28 kg N ha -1 . Maize growth following the legumes for two subsequent cropping seasons was in most cases not directly related to the N inputs due to pest infestation and drought. On a sandy soil, these legumes adapted poorly and did not improve N cycling.

    Soil samples for mineral N determination in profiles were taken at fallow termination and every two weeks during maize cropping with an auger in 0.2 m sections to 1.2 m depth. Pre-season NH 4+ amounts were > 12 kg N ha -1 in the 0-0.2 m layer for treatments that had a large litter layer. There was a flush of NO 3- -N in the Sesbania and Acacia plots with the first rains. Topsoil NO 3- had increased to >29 kg N ha -1 by the time of establishing the maize crop. NO 3- -N amounts decreased rapidly within three weeks of maize planting to 9 and 11 kg N ha -1 for the Sesbania and Acacia plots, respectively. Total NO 3- -N leaching losses from the 0-0.4mlayer ranged from 29-40 kg ha -1 for Sesbania and Acacia plots within two weeks when 104 mm rainfall was received to an already fully recharged soil profile. NO 3- -N then increased below the 0.4 m depth during early season when the maize had not developed a sufficient root length density to effectively capture nutrients. Nitrous oxide emissions were small, with a peak of 12 g N 2 O-N ha -1 day -1 from Sesbania plots and near background fluxes in maize monoculture plots. The decrease of mineral N concentration in the topsoil resulted in reduced N 2 O fluxes, despite very high soil moisture conditions. N 2 O-N emissions were greatest for Sesbania plots with only 0.3 kg ha -1 lost in 56 days.

    The effects of improved fallows on rainfall partitioning and associated soil loss were investigated using simulated rainfall at 35 mm h -1 . Immediately after fallow clearance, infiltration rates were greater than water application rate for the Acacia and natural fallow treatments, but steady state infiltration rates were 24 mm h -1 in Sesban and 5 mm h -1 in continuous maize. The estimated runoff losses after 30 minutes of rainfall were 44% from continuous maize compared with 22% from Sesbania and none from Acacia and natural fallow plots. After one post-fallow crop, water infiltration was still greater than 35 mm h -1 in the Acacia plots. Steady state infiltration rates after 30 minutes of rainfall were 8 and 5 mm h -1 for Sesbania and continuous maize systems, respectively. Planted tree fallows increase infiltration rates, but the effect markedly decrease after one year of maize cropping in non-coppicing tree fallows.

    In a field litterbag decomposition experiment, the course of the decomposition could be adequately described by the function Y = (Y0-Q)e -kt + Q, and the relative decomposition constants for Sesbania and Acacia litters were 0.053 and 0.039 d -1 , respectively. Under laboratory incubation conditions, N mineralized from fresh Sesbania prunings was 55% after 120 days compared with 27% only for the Sesbania litter. During the same period, fresh prunings of Acacia released only 12 % of the added N while Acacia litter released 9 %. N mineralization from Acacia fresh prunings was depressed by the high protein binding capacity of its polyphenols. Except for Sesbania litter, the rest of the senesced legume materials showed N immobilization up to 60 days. 

    The study showed that Sesbania, Acacia and Cajanus produced useful amounts of biomass on soils of at least loamy texture and improved N cycling significantly, but adapted poorly in lighter soils. Under conditions of severe texture constraints, mucuna showed robustness but has the disadvantage of having no direct food value. Gaseous N losses after incorporating legume materials were small, and the reduction of NO 3- leaching is the single largest challenge to increased N recovery in the highly porous soils.

    Vanggewas voor snijmais: Oogsten of niet?
    Laarhoven, G.C.P.M. van - \ 2003
    Praktijkkompas. Rundvee 17 (2003)2. - ISSN 1570-8586 - p. 12 - 13.
    teeltsystemen - tussenteelt - onderteelt - ondergewassen - maïs - rotaties - tussengewassen (intercrops) - oogsttijdstip - zaaitijd - oogsten - zaaien - opbrengsten - gewasopbrengst - stikstof - plantenvoeding - stikstoffixatie - proeven - experimenteel veldonderzoek - cropping systems - intercropping - catch cropping - catch crops - maize - rotations - intercrops - harvesting date - sowing date - harvesting - sowing - yields - crop yield - nitrogen - plant nutrition - nitrogen fixation - trials - field experimentation
    Proefbedrijf Cranendonck voerde in de periode 1999 - 2001 een veldproef uit waarin vanggewassen op verschillende tijdstippen zijn gescheurd.
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.