Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato
    Etalo, D.W. ; Stulemeijer, I.J.E. ; Esse, H.P. van; Vos, R.C.H. de; Bouwmeester, H.J. ; Joosten, M.H.A.J. - \ 2013
    Plant Physiology 162 (2013)3. - ISSN 0032-0889 - p. 1599 - 1617.
    programmed cell-death - pathogen pseudomonas-syringae - campestris pv. vesicatoria - glutathione s-transferases - amino-acid catabolism - leaf rust resistance - higher-plant cells - mass-spectrometry - cladosporium-fulvum - functional-analysis
    The hypersensitive response (HR) is considered to be the hallmark of the resistance response of plants to pathogens. To study HR-associated transcriptome and metabolome reprogramming in tomato (Solanum lycopersicum), we used plants that express both a resistance gene to Cladosporium fulvum and the matching avirulence gene of this pathogen. In these plants, massive reprogramming occurred, and we found that the HR and associated processes are highly energy demanding. Ubiquitin-dependent protein degradation, hydrolysis of sugars, and lipid catabolism are used as alternative sources of amino acids, energy, and carbon skeletons, respectively. We observed strong accumulation of secondary metabolites, such as hydroxycinnamic acid amides. Coregulated expression of WRKY transcription factors and genes known to be involved in the HR, in addition to a strong enrichment of the W-box WRKY-binding motif in the promoter sequences of the coregulated genes, point to WRKYs as the most prominent orchestrators of the HR. Our study has revealed several novel HR-related genes, and reverse genetics tools will allow us to understand the role of each individual component in the HR.
    Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy
    Thomma, B.P.H.J. ; Nürnberger, T. ; Joosten, M.H.A.J. - \ 2011
    The Plant Cell 23 (2011)1. - ISSN 1040-4651 - p. 4 - 15.
    receptor-like kinase - parasitica var.-nicotianae - plant defense responses - pathogen pseudomonas-syringae - fungus cladosporium-fulvum - hypersensitive cell-death - disease resistance gene - innate immune-response - high-affinity binding - cultured rice cells
    Typically, pathogen-associated molecular patterns (PAMPs) are considered to be conserved throughout classes of microbes and to contribute to general microbial fitness, whereas effectors are species, race, or strain specific and contribute to pathogen virulence. Both types of molecule can trigger plant immunity, designated PAMP-triggered and effector-triggered immunity (PTI and ETI, respectively). However, not all microbial defense activators conform to the common distinction between PAMPs and effectors. For example, some effectors display wide distribution, while some PAMPs are rather narrowly conserved or contribute to pathogen virulence. As effectors may elicit defense responses and PAMPs may be required for virulence, single components cannot exclusively be referred to by one of the two terms. Therefore, we put forward that the distinction between PAMPs and effectors, between PAMP receptors and resistance proteins, and, therefore, also between PTI and ETI, cannot strictly be maintained. Rather, as illustrated by examples provided here, there is a continuum between PTI and ETI. We argue that plant resistance is determined by immune receptors that recognize appropriate ligands to activate defense, the amplitude of which is likely determined by the level required for effective immunity
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.