Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==permafrost distribution
Check title to add to marked list
LPJmL4 model output for the publications in GMD: LPJmL4 - a dynamic global vegetation model with managed land: Part I – Model description and Part II – Model evaluation
Schaphoff, Sibyll ; Bloh, Werner von; Rammig, Anja ; Thonicke, Kirsten ; Biemans, H. ; Forkel, Matthias ; Gerten, Dieter ; Heinke, Jens ; Jägermeyr, Jonas ; Knauer, Jürgen ; Langerwisch, Fanny ; Lucht, Wolfgang ; Müller, Christoph ; Rolinski, Susanne ; Waha, Katharina - \ 2018
soil carbon - vegetation carbon - global carbon balance - permafrost distribution - discharge - fractional burned area - crop yields - global dynamic vegetation model - vegetation dynamics
LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. The LPJmL4 model combines plant physiological relations, generalized empirically established functions and plant trait parameters. The model incorporates dynamic land use at the global scale and is also able to simulate the production of woody and herbaceous short-rotation bio-energy plantations. Grid cells may contain one or several types of natural or agricultural vegetation. A comprehensive description of the model is given by Schaphoff et al. (2017a, http://doi.org/10.5194/gmd-2017-145). The data presented here represent some standard LPJmL4 model results for the land surface described in Schaphoff et al. (2017a,). Additionally, these results are evaluated in the companion paper of Schaphoff et al. (2017b, http://doi.org/10.5194/gmd-2017-146). The data collection includes some key output variables made with different model setups described by Schaphoff et al. (2017b). The data cover the entire globe with a spatial resolution of 0.5° and temporal coverage from 1901-2011 on an annual basis for soil, vegetation, aboveground and litter carbon as well as for vegetation distribution, crop yields, sowing dates, maximum thawing depth, and fire carbon emissions. Vegetation distribution is given for each plant functional type (PFT), crop yields, and sowing dates are given for each crop functional type (CFT), respectively. Monthly data are provided for the carbon fluxes (net primary production, gross primary production, soil respiration) and the water fluxes (transpiration, evaporation, interception, runoff, and discharge) and for absorbed photosynthetically active radiation (FAPAR) and albedo.
LPJmL4 Model Code
Schaphoff, Sibyll ; Bloh, Werner von; Thonicke, Kirsten ; Biemans, H. ; Forkel, Matthias ; Gerten, Dieter ; Heinke, Jens ; Jägermeyr, Jonas ; Müller, Christoph ; Rolinski, Susanne ; Waha, Katharina ; Stehfest, Elke ; Waal, Liesbeth de; Heyder, Ursula ; Gumpenberger, Marlies ; Beringer, Tim - \ 2018
Potsdam Institute for Climate Impact Research (PIK)
soil carbon - vegetation carbon - global carbon balance - permafrost distribution - discharge - fractional burned area - crop yields - global dynamic vegetation model - vegetation dynamics
LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. The LPJmL4 model combines plant physiological relations, generalized empirically established functions and plant trait parameters. The model incorporates dynamic land use at the global scale and is also able to simulate the production of woody and herbaceous short-rotation bio-energy plantations. Grid cells may contain one or several types of natural or agricultural vegetation.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.