Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 20 / 153

    • help
    • print

      Print search results

    • export

      Export search results

    • alert
      We will mail you new results for this query: keywords==phenology
    Check title to add to marked list
    Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird
    Dominoni, Davide M. ; Kjellberg Jensen, Johan ; Jong, Maaike de; Visser, Marcel E. ; Spoelstra, Kamiel - \ 2020
    Ecological Applications 30 (2020)3. - ISSN 1051-0761
    artificial light at night - light pollution - Parus major - phenology - timing of reproduction - urbanization

    The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the Great Tit (Parus major), using a replicated experimental set-up where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light vs. the dark treatment, and similar trends for red light. However, there was a strong interannual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.

    Comparing two measures of phenological synchrony in a predator–prey interaction: Simpler works better
    Ramakers, Jip J.C. ; Gienapp, Phillip ; Visser, Marcel E. - \ 2020
    Journal of Animal Ecology 89 (2020)3. - ISSN 0021-8790 - p. 745 - 756.
    demographic processes - global climate change - match–mismatch hypothesis - Parus major - phenology - selection

    Global climate change has sparked a vast research effort into the demographic and evolutionary consequences of mismatches between consumer and resource phenology. Many studies have used the difference in peak dates to quantify phenological synchrony (match in dates, MD), but this approach has been suggested to be inconclusive, since it does not incorporate the temporal overlap between the phenological distributions (match in overlap, MO). We used 24 years of detailed data on the phenology of a predator–prey system, the great tit (Parus major) and the main food for its nestlings, caterpillars, to estimate MD and MO at the population and brood levels. We compared the performance of both metrics on two key demographic parameters: offspring recruitment probability and selection on the timing of reproduction. Although MD and MO correlated quadratically as expected, MD was a better predictor for both offspring recruitment and selection on timing than MO. We argue—and verify through simulations—that this is because quantifying MO has to be based on nontrivial, difficult-to-verify assumptions that likely render MO too inaccurate as a proxy for food availability in practice. Our results have important implications for the allocation of research efforts in long-term population studies in highly seasonal environments.

    Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird
    Hidalgo Aranzamendi, Nataly ; Hall, Michelle L. ; Kingma, Sjouke A. ; Pol, Martijn van de; Peters, Anne - \ 2019
    Journal of Animal Ecology 88 (2019)11. - ISSN 0021-8790 - p. 1799 - 1811.
    annual cycle - avian life-history - phenology - phenotypic plasticity - timing of reproduction - trophic interactions - tropics - unpredictable environment

    Changes in climate are shifting the timing of life cycle events in the natural world. Compared to northern temperate areas, these effects are relatively poorly understood in tropical and southern regions, where there is limited information on how timing of breeding and food availability are affected by climatic factors, and where patterns of breeding activity are more unpredictable within and between years. Combining a new statistical modelling approach with 5 years of continuous individual-based monitoring of a monsoonal tropical insectivorous bird, we quantified (a) the proximate climatic drivers at two trophic levels: timing of breeding and abundance of arthropod prey; (b) the effect of climate variation on reproductive output and (c) the role of individual plasticity. Rainfall was identified as the main determinant of phenology at both trophic levels. Throughout the year, likelihood of egg laying increased very rapidly in response to even small amounts of rain during the preceding 0–3 weeks. Adult body mass and male sperm storage also increased rapidly after rain, suggesting high breeding preparedness. Additionally, females were flexible, since they were more likely to nest whether their previous attempt was longer ago and unsuccessful. Arthropod abundance also increased after rainfall, but more slowly, with a peak around 10 weeks. Therefore, the peak food availability coincided with the presence of dependent fledglings. Fitness benefits of nesting after more rain appeared to be linked to offspring quantity rather than quality: nest attempts following higher rainfall produced larger clutches, but showed no improvement in nestling mass or relative fledging success. The response of clutch size to rainfall was plastic, since repeated sampling showed that individual females laid larger clutches after more rain, possibly mediated by improved body mass. Rapid, individually flexible breeding in response to rainfall and slower increase in arthropod abundance also as a response to rainfall, might buffer insectivorous species living in tropical seasonal environments from climate change-induced phenological trophic mismatches.

    Temporal-Spatial Variation in Questing Tick Activity in the Netherlands: The Effect of Climatic and Habitat Factors
    Hartemink, Nienke ; Vliet, Arnold Van; Sprong, Hein ; Jacobs, Frans ; Garcia-Martí, Irene ; Zurita-Milla, Raul ; Takken, Willem - \ 2019
    Vector-Borne and Zoonotic Diseases 19 (2019)7. - ISSN 1530-3667 - p. 494 - 505.
    Ixodes ricinus - phenology - population dynamics - saturation deficit - soil structure - temperature - vegetation

    Longitudinal studies are fundamental in the assessment of the effect of environmental factors on tick population dynamics. In this study, we use data from a 10-year study in 11 different locations in the Netherlands to gauge the effects of climatic and habitat factors on the temporal and spatial variation in questing tick activity. Marked differences in the total number of ticks were found between locations and between years. We investigated which climatic and habitat factors might explain this variation. No effects of climatic factors on the total number of ticks per year were observed, but we found a clear effect of temperature on the onset of tick activity. In addition, we found positive associations between (1) humus layer thickness and densities of all three stages, (2) moss and blackberry abundance and larval densities, and (3) blueberry abundance and densities of larva and nymphs. We conclude that climatic variables do not have a straightforward association with tick density in the Netherlands, but that winter and spring temperatures influence the onset of tick activity. Habitats with apparently similar vegetation types can still differ in tick population densities, indicating that local composition of vegetation and especially of wildlife is likely to contribute considerably to the spatial variation in tick densities.

    Data from: Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial
    Velthuis, Mandy ; Kosten, S. ; Aben, Ralf ; Kazanjian, Garabet ; Hilt, Sabine ; Peeters, E.T.H.M. ; Donk, Ellen van; Bakker, Elisabeth S. - \ 2019
    carbon cycle - decomposition - global warming - mineralization - phenology - primary production - sedimentation - submerged aquatic plant
    Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year‐round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year‐round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m−2 year−1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m−2 year−1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte‐dominated systems, while not necessarily affecting net carbon burial on a system scale.
    Experiments Are Necessary in Process-Based Tree Phenology Modelling
    Hänninen, Heikki ; Kramer, Koen ; Tanino, Karen ; Zhang, Rui ; Wu, Jiasheng ; Fu, Yongshuo H. - \ 2019
    Trends in Plant Science 24 (2019)3. - ISSN 1360-1385 - p. 199 - 209.
    bud burst - climate change - dormancy - phenology - process-based modelling

    In boreal and temperate trees, air temperature is a major environmental factor regulating the timing of spring phenological events, such as vegetative bud burst, through underlying physiological processes. This has been established by experimental research, and mathematical process-based tree phenology models have been developed based on the results. The models have often been applied when assessing the effects of climate change. Currently, there is an increasing trend to develop process-based tree phenology models using only observational phenological records from natural conditions. We point out that this method runs a high risk of producing models that do not simulate the real physiological processes in the trees and discuss experimental designs facilitating the development of biologically realistic process-based models for tree spring phenology.

    Characterization of phenology, physiology, morphology and biomass traits across a broad Euro-Mediterranean ecotypic panel of the lignocellulosic feedstock Arundo donax
    Fabbrini, Francesco ; Ludovisi, Riccardo ; Alasia, Omar ; Flexas, Jaume ; Douthe, Cyril ; Ribas Carbó, Miquel ; Robson, Paul ; Taylor, Gail ; Scarascia-Mugnozza, Giuseppe ; Keurentjes, Joost J.B. ; Harfouche, Antoine - \ 2019
    Global change biology Bioenergy 11 (2019)1. - ISSN 1757-1693 - p. 152 - 170.
    Arundo donax - biomass - ecotype variability - growth traits - lignocellulosic biomass - multivariate analysis - perennial grasses - phenology - physiology

    Giant reed (Arundo donax L.) is a perennial rhizomatous grass, which has attracted great attention as a potential lignocellulosic feedstock for bioethanol production due to high biomass yield in marginal land areas, high polysaccharide content and low inhibitor levels in microbial fermentations. However, little is known about the trait variation that is available across a broad ecotypic panel of A. donax nor the traits that contribute most significantly to yield and growth in drought prone environments. A collection of 82 ecotypes of A. donax sampled across the Mediterranean basin was planted in a common garden experimental field in Savigliano, Italy. We analysed the collection using 367 clumps representing replicate plantings of 82 ecotypes for variation in 21 traits important for biomass accumulation and to identify the particular set of ecotypes with the most promising potential for biomass production. We measured morpho-physiological, phenological and biomass traits and analysed causal relationships between traits and productivity characteristics assessed at leaf and canopy levels. The results identified differences among the 82 ecotypes for all studied traits: those showing the highest level of variability included stomatal resistance, stem density (StN), stem dry mass (StDM) and total biomass production (TotDM). Multiple regression analysis revealed that leaf area index, StDM, StN, number of nodes per stem, stem height and diameter were the most significant predictors of TotDM and the most important early selection criteria for bioenergy production from A. donax. These traits were used in a hierarchical cluster analysis to identify groups of similar ecotypes, and a selection was made of promising ecotypes for multiyear and multisite testing for biomass production. Heritability estimates were significant for all traits. The potential of this ecotype collection as a resource for studies of germplasm diversity and for the analysis of traits underpinning high productivity of A. donax is highlighted.

    Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial
    Velthuis, Mandy ; Kosten, Sarian ; Aben, Ralf ; Kazanjian, Garabet ; Hilt, Sabine ; Peeters, Edwin T.H.M. ; Donk, Ellen van; Bakker, Elisabeth S. - \ 2018
    Global Change Biology 24 (2018)11. - ISSN 1354-1013 - p. 5231 - 5242.
    carbon cycle - decomposition - global warming - mineralization - phenology - primary production - sedimentation - submerged aquatic plant

    Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year-round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year-round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m−2 yaer−1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m−2 year−1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte-dominated systems, while not necessarily affecting net carbon burial on a system scale.

    Data from: Explaining European fungal fruiting phenology with climate variability
    Andrew, Carrie ; Heegaard, Einar ; Høiland, Klaus ; Senn-Irlet, Beatrice ; Kuijper, T.W.M. ; Krisai-Greilhuber, Irmgard ; Kirk, Paul M. ; Heilmann-Clausen, Jacob ; Gange, Alan C. ; Egli, Simon ; Bässler, Claus ; Büntgen, Ulf ; Boddy, Lynne ; Kauserud, Håvard - \ 2018
    climate - fungi - fruit bodies - distribution - NDVI - nutritional mode - path analysis - phenology
    Here we assess the impact of geographically dependent (latitude, longitude and altitude) changes in bioclimatic (temperature, precipitation and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path‐analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 days, primarily with latitude. Altitude affected fruiting by up to 30 days, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large‐scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic, as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring‐fruiting ectomycorrhizal fungi. Species‐specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems.
    Explaining European fungal fruiting phenology with climate variability
    Andrew, Carrie ; Heegaard, Einar ; Høiland, Klaus ; Senn-Irlet, Beatrice ; Kuyper, Thomas W. ; Krisai-Greilhuber, Irmgard ; Kirk, Paul M. ; Heilmann-Clausen, Jacob ; Gange, Alan C. ; Egli, Simon ; Bässler, Claus ; Büntgen, Ulf ; Boddy, Lynne ; Kauserud, Håvard - \ 2018
    Ecology 99 (2018)6. - ISSN 0012-9658 - p. 1306 - 1315.
    climate - distribution - Europe - fruit bodies - fungi - NDVI - nutritional mode - path analysis - phenology
    Here we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems.
    Data from: Plant quantity affects development and survival of a gregarious insect herbivore and its endoparasitoid wasp
    Fei, Minghui ; Gols, R. ; Zhu, F. ; Harvey, Jeffrey A. - \ 2016
    Wageningen University & Research
    development - group-living - herbivore - mortality - parasitiod - phenology - starvation - survival
    Data for the paper of plant quantity represents a greater constraint than quality for a gregarious insect herbivore and its endoparasitoid wasp
    Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population
    Allard, Alix ; Bink, Marco C.A.M. ; Martinez, Sebastien ; Kelner, Jean Jacques ; Legave, Jean Michel ; Guardo, Mario Di; Pierro, Erica A. Di; Laurens, François ; De Weg, Eric W. Van; Costes, Evelyne - \ 2016
    Journal of Experimental Botany 67 (2016)9. - ISSN 0022-0957 - p. 2875 - 2888.
    Climate change - DAM genes - dormancy - flowering genes - Malus×domestica (Borkh) - pedigree-based analysis - phenology - QTL

    In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.

    The importance of phenology in studies of plant-herbivore-parasitoid interactions
    Fei, Minghui - \ 2016
    Wageningen University. Promotor(en): Louise Vet; J.A. Harvey; Rieta Gols. - Wageningen : Wageningen University - ISBN 9789462576551 - 170
    016-3952 - phenology - plant-herbivore interactions - parasitoids - interactions - annuals - insects - pieris brassicae - cotesia glomerata - brassicaceae - host plants - fenologie - plant-herbivoor relaties - parasitoïden - interacties - eenjarigen - insecten - pieris brassicae - cotesia glomerata - brassicaceae - waardplanten

    Thesis title: The importance of phenology in studies of plant-herbivore-parasitoid interactions

    Author: Minghui Fei

    Abstract

    As food resources of herbivorous insects, the quality and quantity of plants can directly affect the performance of herbivorous insects and indirectly affect the performance of natural enemies of the herbivorous insects. In nature, plant quality and quantity are dynamic and can change in individual plants over the course of a single growing season. Many multivoltine insects are known to attack short-lived annual plants that are present for only 2 or 3 months in the field. These short-lived plants may germinate and grow at different times and locations during the growing season. In this situation, each generation of insects is obligated to search for potentially new species of food plants across the growing season, which may differ in qualitative and quantitative traits. The aim of this thesis was to explore how seasonal phenology of potential food plants effects a multivoltine herbivore-parasitoid interaction. In particular, I examined potential qualitative and quantitative constraints imposed by the seasonal phenology of several food-plant species on the development and survival as well as on oviposition decisions of a gregarious specialist herbivorous insect and its natural enemy that both have multiple generations per year. As a model system, I used a multivoltine specialist herbivorous insect associated with different plant species, the large cabbage white butterfly, Pieris brassicae L., and its specialized multivoltine endoparasitoid, Cotesia glomerata L.. Pieris brassicae primary feed on plants in the large family Brassicaceae. I used three annual brassicaceous plants, Brassica rapa L., Sinapis arvensis L., and Brassica nigra L., which grow rapidly and exhibit differing phenologies, each growing within a short period of time and with little temporal overlap amongst them. These plants are known to serve as food plants for successive generations of P. brassicae and related species.

    In bioassay experiments under controlled greenhouse and semi-field conditions, I found that P. brassicae and C. glomerata were marginally affected by seasonal-related and plant species-specific differences in food-plant quality. Pieris brassicae was also marginally affected by the ontogenetic variations in food-plant quality. In addition, food-plant shifts in different generations had small effects (both positive and negative depending on plant species) on the performance of P. brassica and C. glomerata. Survival and performance of P. brassicae was much more constrained by quantitative than qualitative aspects of the food plant. The survival and performance of C. glomerata was also affected by similar quantitative constraints as that of its host.

    In behavioural experiments under controlled greenhouse and semi-field conditions, I found that female P. brassicae oviposition preference order for food plants declined with plant age of different plant species (S. arvensis and B. nigra). Female P. brassicae butterflies may ‘anticipate’ future quantity or quality potential of the food plants when choosing oviposition sites. Pre-adult experience had minor effects on P. brassicae butterfly oviposition preference and had no effect on C. glomerata landing preference. Pieris brassicae also did not exhibit consistent preference for any of the plant species, whereas C. glomerata had a clear preference on B. rapa. Further studies on trophic interactions need to incorporate more spatial and temporal realism, i.e. plant species shifts (temporally dynamic interactions) as well as to ‘track’ insect foraging behaviour in the field (spatially dynamic interactions). Thus far virtually nothing is known about these areas or as to the success of naïve insects in locating new patches of food plants or hosts in different habitats.

    Geen winter? Niet erg hoor
    Vliet, Arnold van - \ 2016
    phenology - winter - climatic change - plant ecology - resilience of nature - nature
    Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative
    Poulter, B. ; MacBean, N. ; Hartley, A. ; Khlystova, I. ; Arino, O. ; Betts, R. ; Bontemps, S. ; Boettcher, M. ; Brockmann, C. ; Defourny, P. ; Hagemann, S. ; Herold, M. ; Kirches, C. ; Lamarche, C. ; Lederer, D. ; Ottlé, C. ; Peters, M. ; Peylin, P. - \ 2015
    Geoscientific Model Development 8 (2015). - ISSN 1991-959X - p. 2315 - 2328.
    global vegetation model - world map - ecosystems - forests - cycle - uncertainties - resolution - feedbacks - phenology - database
    Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI), with land cover (LC_CCI) as 1 of 13 essential climate variables targeted for research development. The LC_CCI was implemented in three phases: first responding to a survey of user needs; developing a global, moderate-resolution land cover data set for three time periods, or epochs (2000, 2005, and 2010); and the last phase resulting in a user tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFTs). The translation was performed as part of consultative process among map producers and users, and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three earth system modeling teams shows significant differences between the LC_CCI PFT data set and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land–atmosphere interactions. The main difference between the new LC_CCI product and PFT data sets used currently by three different dynamic global vegetation modeling teams is a reduction in high-latitude grassland cover, a reduction in tropical tree cover and an expansion in temperate forest cover in Europe. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as phase 2 of the European Space Agency CCI program continues.
    The Earth Observation Data for Habitat Monitoring (EODHaM) System
    Lucas, R.M. ; Blonda, P. ; Bunting, P. ; Jones, G. ; Inglada, J. ; Arias-Maldonado, M. ; Kosmidou, V. ; Petrou, Z. ; Manakos, I. ; Adamo, M. ; Charnock, R. ; Tarantino, C. ; Mücher, C.A. ; Kramer, H. ; Jongman, R.H.G. ; Honrado, J. ; Mairota, P. - \ 2015
    International Journal of applied Earth Observation and Geoinformation 37 (2015). - ISSN 0303-2434 - p. 17 - 28.
    remotely-sensed data - categories ghc - file format - vegetation - satellite - classifications - biodiversity - reflectance - phenology - software
    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.
    Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis
    Hutchinson, J.M.S. ; Jacquin, A. ; Hutchinson, S.L. ; Verbesselt, J. - \ 2015
    Journal of Environmental Management 150 (2015). - ISSN 0301-4797 - p. 355 - 366.
    locally weighted regression - structural-change models - plant community - trend analysis - modis ndvi - phenology - wildlife - gimms
    Given the significant land holdings of the U.S. Department of Defense, and the importance of those lands to support a variety of inherently damaging activities, application of sound natural resource conservation principles and proactive monitoring practices are necessary to manage military training lands in a sustainable manner. This study explores a method for, and the utility of, analyzing vegetation condition and trends as sustainability indicators for use by military commanders and land managers, at both the national and local levels, in identifying when and where vegetation-related environmental impacts might exist. The BFAST time series decomposition method was applied to a ten-year MODIS NDVI time series dataset for the Fort Riley military installation and Konza Prairie Biological Station (KPBS) in northeastern Kansas. Imagery selected for time-series analysis were 16-day MODIS NDVI (MOD13Q1 Collection 5) composites capable of characterizing vegetation change induced by human activities and climate variability. Three indicators related to gradual interannual or abrupt intraannual vegetation change for each pixel were calculated from the trend component resulting from the BFAST decomposition. Assessment of gradual interannual NDVI trends showed the majority of Fort Riley experienced browning between 2001 and 2010. This result is supported by validation using high spatial resolution imagery. The observed versus expected frequency of linear trends detected at Fort Riley and KPBS were significantly different and suggest a causal link between military training activities and/or land management practices. While both sites were similar with regards to overall disturbance frequency and the relative spatial extents of monotonic or interrupted trends, vegetation trajectories after disturbance were significantly different. This suggests that the type and magnitude of disturbances characteristic of each location result in distinct post-disturbance vegetation responses. Using a remotely-sensed vegetation index time series with BFAST and the indicators outlined here provides a consistent and relatively rapid assessment of military training lands with applicability outside of grassland biomes. Characterizing overall trends and disturbance responses of vegetation can promote sustainable use of military lands and assist land managers in targeting specific areas for various rehabilitation activities.
    Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia
    Schmidt, M. ; Lucas, R. ; Bunting, P. ; Verbesselt, J. ; Armston, J. - \ 2015
    Remote Sensing of Environment 158 (2015). - ISSN 0034-4257 - p. 156 - 168.
    reflectance fusion model - surface reflectance - aerial-photography - landsat data - vegetation - plus - phenology - framework - lidar
    High spatio-temporal resolution optical remote sensing data provide unprecedented opportunities to monitor and detect forest disturbance and loss. To demonstrate this potential, a 12-year time series (2000 to 2011) with an 8-day interval of a 30 m spatial resolution data was generated by the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) with Landsat sensor observations and Moderate Resolution Imaging Spectroradiometer (MODIS) data as input. The time series showed a close relationship over homogeneous forested and grassland sites, with r2 values of 0.99 between Landsat and the closest STARFM simulated data; and values of 0.84 and 0.94 between MODIS and STARFM. The time and magnitude of clearing and re-clearing events were estimated through a phenological breakpoint analysis, with 96.2% of the estimated breakpoints of the clearing event and 83.6% of the re-clearing event being within 40 days of the true clearing. The study highlights the benefits of using these moderate resolution data for quantifying and understanding land cover change in open forest environments.
    Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity
    Mendivelso, H.A. ; Camarero, J.J. ; Gutierrez, E. ; Zuidema, P. - \ 2014
    Agricultural and Forest Meteorology 188 (2014). - ISSN 0168-1923 - p. 13 - 23.
    tropical forests - ring chronologies - rain-forest - santa-cruz - water-use - phenology - patterns - bolivia - precipitation - coordination
    We analyzed the effects of climate and drought on radial growth using dendrochronology in seven deciduous tree species coexisting in a Bolivian tropical dry forest subjected to seasonal drought. Precipitation, temperature and a multiscalar drought index were related to tree-ring width data at different time-scales (from one month to 42 years). Precipitation affected positively tree growth in all species, mainly during the wet season, while temperature affected it negatively in five species. Tree growth responses to precipitation and temperature were species-specific and peaked at short-time scales, specifically from one to nine months. At inter-annual scales tree growth always responded positively to less dry conditions at short-time scales, particularly from two to seven months, and also at long-time scales from six to 30 years. Tree growth was mainly sensitive to multi-annual droughts and such sensitivity differed among species. Our findings suggest that tree species of the studied tropical dry forest are predominantly sensitive in terms of growth reduction to long-lasting droughts. This time-dependency of growth responses to drought should be explicitly considered as an additional constraint of the community dynamics in evaluations of the future responses of tropical dry forests to climate warming. (C) 2014 Elsevier B.V. All rights reserved.
    A cost-effective approach for improving the quality of soil sealing change detection from Landsat imagery
    Smiraglia, D. ; Rinaldo, S. ; Ceccarelli, T. ; Bajocco, S. ; Salvati, L. ; Ricotta, C. ; Perini, L. - \ 2014
    European Journal of Remote Sensing 47 (2014). - ISSN 2279-7254 - p. 805 - 819.
    urban - modis - tm - transformation - segmentation - phenology - sprawl - region - ndvi - area
    The aim of this study is to develop a cost-effective approach for soil sealing change detection integrating radiometric analysis, multi-resolution segmentation and object-based classifiers in two study areas in Italy: Campania region and Veneto region. The integrated approach uses multi-temporal satellite images and CORINE Land Cover (CLC) maps. A good overall accuracy was obtained for the soil sealing maps produced. The results show an improvement in terms of size of the minimum mapping unit and of the changed object (1,44 ha in both cases) in respect to the CLC. The approach proves to be cost-effective given the data which are provided at low or no cost and as well as the level of automation achievable.
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.