Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 20 / 120

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Phylogeny and multiple independent whole-genome duplication events in the Brassicales
    Mabry, Makenzie E. ; Brose, Julia M. ; Blischak, Paul D. ; Sutherland, Brittany ; Dismukes, Wade T. ; Bottoms, Christopher A. ; Edger, Patrick P. ; Washburn, Jacob D. ; An, Hong ; Hall, Jocelyn C. ; McKain, Michael R. ; Al-Shehbaz, Ihsan ; Barker, Michael S. ; Schranz, M.E. ; Conant, Gavin C. ; Pires, J.C. - \ 2020
    American Journal of Botany 107 (2020)8. - ISSN 0002-9122 - p. 1148 - 1164.
    Brassicales - Capparaceae - Cleomaceae - phylo-transcriptomics - phylogeny - Resedaceae - whole-genome duplication

    Premise: Whole-genome duplications (WGDs) are prevalent throughout the evolutionary history of plants. For example, dozens of WGDs have been phylogenetically localized across the order Brassicales, specifically, within the family Brassicaceae. A WGD event has also been identified in the Cleomaceae, the sister family to Brassicaceae, yet its placement, as well as that of WGDs in other families in the order, remains unclear. Methods: Phylo-transcriptomic data were generated and used to infer a nuclear phylogeny for 74 Brassicales taxa. Genome survey sequencing was also performed on 66 of those taxa to infer a chloroplast phylogeny. These phylogenies were used to assess and confirm relationships among the major families of the Brassicales and within Brassicaceae. Multiple WGD inference methods were then used to assess the placement of WGDs on the nuclear phylogeny. Results: Well-supported chloroplast and nuclear phylogenies for the Brassicales and the putative placement of the Cleomaceae-specific WGD event Th-ɑ are presented. This work also provides evidence for previously hypothesized WGDs, including a well-supported event shared by at least two members of the Resedaceae family, and a possible event within the Capparaceae. Conclusions: Phylogenetics and the placement of WGDs within highly polyploid lineages continues to be a major challenge. This study adds to the conversation on WGD inference difficulties by demonstrating that sampling is especially important for WGD identification and phylogenetic placement. Given its economic importance and genomic resources, the Brassicales continues to be an ideal group for assessing WGD inference methods.

    Leucine-rich repeat receptor-like kinase II phylogenetics reveals five main clades throughout the plant kingdom
    Hosseini, Samin ; Schmidt, Ed D.L. ; Bakker, Freek T. - \ 2020
    The Plant Journal 103 (2020)2. - ISSN 0960-7412 - p. 547 - 560.
    kinase - leucine-rich repeat receptor - LRR-RLKII - phylogeny - SERK

    Receptor-like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine-rich repeat (LRR)-RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP-interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR-RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK-like’ plus related sequences in order to estimate phylogeny within the LRR-RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR-RLKII 1–5), in each of which the main pattern of land plant relationships re-occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR-RLKs are incongruent: whereas the LRR part supports a LRR-RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR-RLKII–receptor complex interaction are located at N-capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR-RLKII clades.

    Born migrators: Historical biogeography of the cosmopolitan family Cannabaceae
    Jin, Jian Jun ; Yang, Mei Qing ; Fritsch, Peter W. ; Velzen, Robin van; Li, De Zhu ; Yi, Ting Shuang - \ 2020
    Journal of Systematics and Evolution 58 (2020)4. - ISSN 1674-4918 - p. 461 - 473.
    ancestral geographical range analysis - Cannabaceae - dispersal - molecular dating - Northern Hemisphere - phylogeny

    Dispersal scenarios have been favored over tectonic vicariance as an explanation for disjunct distributions in many plant taxa during the last two decades. However, this argument has been insufficiently addressed in cosmopolitan groups showing disjunct patterns in both the temperate and tropical regions. In this study, we used the Cannabaceae, an angiosperm family distributed in tropical and temperate regions of both the New World and the Old World, to explore the role of dispersal in shaping disjunct patterns and species diversification of cosmopolitan plants. We reconstructed the phylogenetic relationships of all 10 genera and 75 species of Cannabaceae (ca. 64.1% of recognized species) based on eight DNA regions. Based on fossil calibrations, we estimated the divergence times and net diversification rates. We further inferred the ancestral geographical ranges with several models and compared the fitness of different models. The Cannabaceae and most genera were strongly supported as monophyletic except for the Parasponia being embedded within the Trema. The Celtis were resolved into two strongly supported clades primarily corresponding to temperate and tropical regions. We inferred that the Cannabaceae originated at ca. 93 Ma, and that subsequent rampant and widespread dispersals shaped the intercontinentally disjunct distribution of the Cannabaceae. Dispersal coincides with adaptation to drier and colder climate in the Northern Hemisphere, or humid and warm climate in the tropical regions, followed by rapid species diversification. This study advances our understanding as to the formation of distribution patterns and species diversification of a plant family with tropical to temperate disjunct distributions.

    New endemic Fusarium species hitch-hiking with pathogenic Fusarium strains causing Panama disease in small-holder banana plots in Indonesia
    Maryani, N. ; Sandoval-Denis, M. ; Lombard, L. ; Crous, P.W. ; Kema, G.H.J. - \ 2019
    Persoonia 43 (2019). - ISSN 0031-5850 - p. 48 - 69.
    Indonesia - new species - non-pathogenic - phylogeny - species complex

    Fusarium species are well known for their abundance, diversity and cosmopolitan life style. Many members of the genus Fusarium are associated with plant hosts, either as plant pathogens, secondary invaders, saprotrophs, and/or endophytes. We previously studied the diversity of Fusarium species in the Fusarium oxysporum species complex (FOSC) associated with Fusarium wilt of banana in Indonesia. In that study, several Fusarium species not belonging to the FOSC were found to be associated with Fusarium wilt of banana. These Fusarium isolates belonged to three Fusarium species complexes, which included the Fusarium fujikuroi species complex (FFSC), Fusarium incarnatum-equiseti species complex (FIESC) and the Fusarium sambucinum species complex (FSSC). Using a multi-gene phylogeny that included partial fragments of the beta-tubulin (tub), calmodulin (cmdA), translation elongation factor 1-alpha (tef1), the internal transcribed spacer region of the rDNA (ITS), the large subunit of the rDNA (LSU), plus the RNA polymerase II large subunit (rpb1) and second largest subunit (rpb2) genes, we were able to identify and characterise several of these as new Fusarium species in the respective species complexes identified in this study.

    New species of Septoria associated with leaf spot diseases in Iran
    Bakhshi, Mounes ; Arzanlou, Mahdi ; Zare, Rasoul ; Groenewald, Johannes Z. ; Crous, Pedro W. - \ 2019
    Mycologia 111 (2019)6. - ISSN 0027-5514 - p. 1056 - 1071.
    4 new taxa - Leaf spot - Mycosphaerellaceae - phylogeny - plant pathogens - systematics

    Species of Septoria are commonly associated with leaf spot diseases of a broad range of plant hosts worldwide. During our investigation of fungi associated with leaf spot diseases in northern and northwestern Iran, several Septoria isolates were recovered from symptomatic leaves on different herbaceous and woody plants in the Asteraceae, Betulaceae, and Salicaceae families. These isolates were studied by applying a polyphasic approach including morphological and cultural data and a multigene phylogeny using a combined data set of partial sequences of the 28S nuc rRNA gene (large subunit [28S]), internal transcribed spacer regions and intervening 5.8S nuc rRNA gene (ITS) of the nuc rDNA operon, actin (actA), translation elongation factor 1-α (tef1), calmodulin (cmdA), β-tubulin (tub2), and DNA-directed RNA polymerase II second largest subunit (rpb2). Four novel species are proposed, namely, Septoria eclipticola on Eclipta prostrata, Septoria firouraghina on Cirsium arvense, Septoria guilanensis on Populus deltoides, and Septoria taleshana on Alnus subcordata. All species are illustrated, and their morphology and phylogenetic relationships with other Septoria species are discussed.

    Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio
    Versluis, Dennis ; Nijsse, Bart ; Naim, Mohd Azrul ; Koehorst, Jasper J. ; Wiese, Jutta ; Imhoff, Johannes F. ; Schaap, Peter J. ; Passel, Mark W.J. van; Smidt, Hauke ; Sipkema, Detmer - \ 2018
    Genome Biology and Evolution 10 (2018)1. - ISSN 1759-6653 - p. 125 - 142.
    domainome - microbiota - phylogeny - secondary metabolites - sponge - symbiosis

    Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesized that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV, and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin, and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival, for example through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.

    Data from: Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites
    Letcher, Susan G. ; Lasky, Jesse R. ; Chazdon, Robin L. ; Norden, Natalia ; Wright, S.J. ; Meave, Jorge A. ; Pérez-García, Eduardo A. ; Muñoz, Rodrigo ; Romero-Pérez, Eunice ; Andrade, Ana ; Balvanera, Patricia ; Bongers, Frans ; Lohbeck, Madelon - \ 2016
    State University of New York (SUNY)
    Determinants of plant community diversity and structure - Life History Evolution - Precipitation gradient - Tropical wet forest - Tropical dry forest - Functional traits - phylogeny - Pioneer species
    1. Successional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late successional stages in wet forest. 2. We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa, and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old-growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. 3. Successional habitat specialization is non-randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend toward stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. 4. Synthesis: The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species-rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species-rich taxa.
    Data from: Low abundant soil bacteria can be metabolically versatile and fast growing
    Kurm, V. ; Putten, W.H. van der; Boer, W. de; Naus-Wiezer, Suzanne ; Hol, W.H.G. - \ 2016
    Wageningen University & Research
    bacterial abundance - life-history traits - phylogeny
    The abundance of species is assumed to depend on their life history traits, such as growth rate and resource specialization. However, this assumption has not been tested for bacteria. Here we investigate how abundance of soil bacteria relates to slow growth and substrate specialization (oligotrophy) versus fast growth and substrate generalization (copiotrophy). We collected 47 saprotrophic soil bacterial isolates of differing abundances and measured their growth rate and the ability to use a variety of single carbon sources. Opposite to our expectation, there was no relationship between abundance in soil and the measured growth rate or substrate utilization profile (SUP). However, isolates with lower growth rates used fewer substrates than faster growing ones supporting the assumption that growth rate may relate to substrate specialization. Interestingly, growth rate and SUP were correlated with phylogeny, rather than with abundance in soil. Most markedly, Gammaproteobacteria on average grew significantly faster and were able to use more substrates than other bacterial classes, whereas Alphaproteobacteria were growing relatively slowly and used fewer substrates. This finding suggests that growth and substrate utilization are phylogenetically deeply conserved. We conclude that growth rate and substrate utilization of soil bacteria are not general determinants of their abundance. Future studies on explaining bacterial abundance need to determine how other factors, such as competition, predation and abiotic factors may contribute to rarity or abundance in soil bacteria.
    A single loop is essential for the octamerization of vanillyl alcohol oxidase
    Ewing, Tom A. ; Gygli, Gudrun ; Berkel, Willem J.H. van - \ 2016
    FEBS Journal 283 (2016)13. - ISSN 1742-464X - p. 2546 - 2559.
    flavoprotein - loop - oligomerization - phylogeny - protein engineering

    The VAO/PCMH family of flavoenzymes is a family of structurally related proteins that catalyse a wide range of oxidation reactions. It contains a subfamily of enzymes that catalyse the oxidation of para-substituted phenols using covalently bound FAD cofactors (the 4PO subfamily). This subfamily is composed of two oxidases, vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO), and two flavocytochrome dehydrogenases, para-cresol methylhydroxylase (PCMH) and eugenol hydroxylase (EUGH). Although they catalyse similar reactions, these enzymes differ in terms of their electron acceptor preference and oligomerization state. For example, VAO forms homo-octamers that can be described as tetramers of stable dimers, whereas EUGO is exclusively dimeric in solution. A possible explanation for this difference is the presence of a loop at the dimer–dimer interface in VAO that is not present in EUGO. Here, the role played by this loop in determining the quaternary structure of these enzymes is investigated. A VAO variant where the loop was deleted, loopless VAO, exclusively formed dimers. However, introduction of the loop into EUGO was not sufficient to induce its octamerization. Neither variant displayed major changes in its catalytic properties as compared to the wild-type enzyme. Bioinformatic analysis revealed that the presence of the loop is conserved within putative fungal oxidases of the 4PO subgroup, but it is never found in putative bacterial oxidases or dehydrogenases. Our results shed light on the molecular mechanism of homo-oligomerization of VAO and the importance of oligomerization for its enzymatic function. Enzymes: p-cresol methylhydroxylase (4-methylphenol:acceptor oxidoreductase (methyl-hydroxylating), EC 1.17.99.1); vanillyl alcohol oxidase (vanillyl alcohol:oxygen oxidoreductase, EC 1.1.3.38).

    Akkermansia species : phylogeny, physiology and comparative genomics
    Ouwerkerk, J.P. - \ 2016
    Wageningen University. Promotor(en): Willem de Vos, co-promotor(en): Clara Belzer. - Wageningen : Wageningen University - ISBN 9789462577411 - 178
    akkermansia - akkermansia muciniphila - gastrointestinal microbiota - phylogeny - physiology - genomics - dna sequencing - nucleotide sequences - transcriptomes - antibiotic resistance - genome annotation - akkermansia - akkermansia muciniphila - microbiota van het spijsverteringskanaal - fylogenie - fysiologie - genomica - dna-sequencing - nucleotidenvolgordes - transcriptomen - antibioticaresistentie - genoomannotatie

    The gastrointestinal tract is lined with a mucus layer, which is colonized by a distinct mucosal microbial population. The anaerobic gut bacterium Akkermansia muciniphila is a well-described member of the mucosal microbiota and has been shown to be a human gut symbiont. In the mucus layer this gut symbiont is likely exposed to the oxygen that diffuses from mucosal epithelial cells. We showed that A. muciniphila has an active detoxification system to cope with reactive oxygen species and can use oxygen for respiration at nanomolar oxygen concentrations, with cytochrome bd as terminal oxidase.

    Until now, the type strain A. muciniphila MucT was the only cultured representative of this species. We isolated and characterized six new A. muciniphila strains from faecal samples of four different human subjects. These A. muciniphila strains showed minimal genomic and physiologic divergence while retaining their mucin degrading and utilisation capacities. Apart from the human gastrointestinal tract, we detected Akkermansia species in intestinal samples of numerous mammals. An additional ten new A. muciniphila strains were isolated from seven different mammalian species and showed high genomic and physiologic similarity to type strain A. muciniphila MucT. Apart from Akkermansia species, other Verrucomicrobia were identified within the gastrointestinal tract of non-human mammals. Furthermore, we obtained an Akkermansia isolate from the reticulated python, which had a similar mucin degrading capacity as the human strain A. muciniphila MucT but showed more efficient galactose utilization. On the basis of further phylogenetic, physiological, and genomic characterisations, strain PytT was found to represent a novel species within the genus Akkermansia, for which the name Akkermansia glycaniphilus sp. nov. is proposed.

    Overall, A. muciniphila strains isolated from intestinal samples of human and other mammals show very limited genomic and physiologic divergence. This together with the widely-spread global presence of A. muciniphila and the dependence on mucin for optimal growth, points towards a conserved symbiosis. This conserved symbiosis might be indicative for the beneficial role of this organism in respect to the host metabolic health. This is in line with the observation that A. muciniphila has been negatively associated with obesity and its associated metabolic disorders.

    In mice, treatment with viable A. muciniphila cells reversed high-fat diet-induced obesity. We described a scalable workflow for the preparation and preservation of high numbers of viable cells of A. muciniphila under strict anaerobic conditions for therapeutic interventions. Moreover, we developed various quality assessment and control procedures aimed to ensure the use of viable cells of A. muciniphila at any location in the world. These viable cells were used in a pilot study in humans in which no adverse events were observed. This is promising for future applications of A. muciniphila as a new therapeutic, leading towards the potential treatment of unhealthy states of the microbiota.

    Genetic diversity and evolution in Lactuca L. (Asteraceae) : from phylogeny to molecular breeding
    Wei, Z. - \ 2016
    Wageningen University. Promotor(en): Eric Schranz. - Wageningen : Wageningen University - ISBN 9789462576148 - 210
    lactuca sativa - leafy vegetables - phylogeny - genetic diversity - domestication - molecular breeding - genomes - dna - quantitative trait loci - evolution - lactuca sativa - bladgroenten - fylogenie - genetische diversiteit - domesticatie - moleculaire veredeling - genomen - dna - loci voor kwantitatief kenmerk - evolutie

    Cultivated lettuce (Lactuca sativa L.) is an important leafy vegetable worldwide. However, the phylogenetic relationships between domesticated lettuce and its wild relatives are still not clear. In this thesis, I focus on the phylogenetic relationships within Lactuca L., including an analysis of the wild Lactuca species that are endemic to Africa for the first time. The genetic variation of responses to salinity in a recombinant inbred line population, derived from a cross between the lettuce crop (L. sativa ‘Salinas’) and wild species (L. serriola), was investigated and the candidate gene in the identified QTL regions was further studied.

    In Chapter 1, I introduce and discuss topics related to genetic diversity and evolution in Lactuca, including an overview of lettuce cultivars and uses, its hypothesized domestication history, the taxonomic position of Lactuca, current status of molecular breeding in lettuce and mechanisms of salinity tolerance in plants, especially the High-affinity K+ Transporter (HKT) gene family.

    In Chapter 2, the most extensive molecular phylogenetic analysis of Lactuca was constructed based on two chloroplast genes (ndhF and trnL-F), including endemic African species for the first time. This taxon sampling covers nearly 40% of the total Lactuca species endemic to Africa and 34% of all Lactuca species. DNA sequences from all the subfamilies of Asteraceae in Genbank and those generated from Lactuca herbarium samples were used to elucidate the monophyly of Lactuca and the affiliation of Lactuca within Asteracaeae. Based on the subfamily tree, 33 ndhF sequences from 30 species and 79 trnL-F sequences from 48 species were selected to infer phylogenetic relationships within Lactuca using Randomized Axelerated Maximum Likelihood (RAxML) and Bayesian Inference (BI) analyses. In addition, biogeographical, chromosomal and morphological character states were analysed based on the Bayesian tree topology. The results showed that Lactuca contains two distinct phylogenetic clades - the crop clade and the Pterocypsela clade. Other North American, Asian and widespread species either form smaller clades or mix with the Melanoseris species in an unresolved polytomy. The newly sampled African endemic species probably should be excluded from Lactuca and treated as a new genus.

    In Chapter 3, twenty-seven wild Lactuca species and four outgroup species were sequenced using next generation sequencing (NGS) technology. The sampling covers 36% of total Lactuca species and all the important geographical groups in the genus. Thirty chloroplast genomes, including one complete (partial) large single copy region (LSC), one small single copy region (SSC), one inverted repeat (IR) region, and twenty-nine nuclear ribosomal DNA sequences (containing the internal transcribed spacer region ) were successfully assembled and analysed. A methodology paper for which I am co-author, but is not included in this thesis, of the sequencing pipeline was published: ‘Herbarium genomics: plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly (IOGA) pipeline’. These NGS data helped resolve deeper nodes in the phylogeny within Lactuca and resolved the polytomy from Chapter 2. The results showed that there are at least four main groups within Lactuca: the crop group, the Pterocypsela group, the North American group and the group containing widely-distributed species. I also confirmed that the endemic African species should be removed and treated as a new genus.

    In Chapter 4, quantitative trait loci (QTLs) related to salt-induced changes in Root System Architecture (RSA) and ion accumulation were determined using a recombinant inbred line population derived from a cross between cultivated lettuce and wild lettuce. I measured the components of RSA by replicated lettuce seedlings grown on vertical agar plates with different NaCl concentrations in a controlled growth chamber environment. I also quantified the concentration of sodium and potassium in replicates of greenhouse-grown plants watered with 100 mM NaCl. The results identified a total of fourteen QTLs using multi-trait linkage analysis, including three major QTLs associated with general root development (qRC9.1), root growth in salt stress condition (qRS2.1), and ion accumulation (qLS7.2).

    In Chapter 5, one of the identified QTL regions (qLS7.2) reported in Chapter 4 was found to contain a homolog of the HKT1 from Arabidopsis thaliana. I did a phylogenetic analysis of Lactuca HKT1-like protein sequences with other published HKT protein sequences and determined transmembrane and pore segments of lettuce HKT1;1 alleles, according to the model proposed for AtHKT1;1. Gene expression pattern and level of LsaHKT1;1 (L. sativa ‘Salinas’) and LseHKT1;1 (L. serriola) in root and shoot were investigated in plants growing hydroponically over a time-course. The measurements of Na+ and K+ contents were sampled at the same time as the samples used for gene expression test. In addition, I examined the 5’ promoter regions of the two genotypes. The results showed low expression levels of both HKT1;1 alleles in Lactuca root and relatively higher expression in shoot, probably due to the negative cis-regulatory elements of HKT1 alleles found in Lactuca promoter regions. Significant allelic differences were found in HKT1;1 expression in early stage (0-24 hours) shoots in and in late stage (2-6 days) roots. shoot HKT1;1 expression/root HKT1;1 expression was generally consistent with the ratios of Na+/K+ balance in the relevant tissues (shoot Na+/K+ divided by root Na+/K+).

    In Chapter 6, I summarize and discuss the results from previous chapters briefly. The implications of Chapter 2 and 3 for Lactuca phylogenetics are discussed, including some key characters for the diagnosis of species within Lactuca, the use of herbarium DNA for NGS technology, and perspectives into Lactuca phylogeny. Future perspectives of genome-wide association mapping for lettuce breeding were also discussed. Lastly, I propose to integrate phylogenetic approaches into investigations of allelic differences in lettuce, not just associated with salinity stress but also with other stressed and beneficial characters, both within and between species.

    Elucidating the Ramularia eucalypti species complex
    Videira, S.I.R. ; Groenewald, J.Z. ; Kolecka, A. ; Haren, L. van; Boekhout, T. ; Crous, P.W. - \ 2015
    Persoonia 34 (2015). - ISSN 0031-5850 - p. 50 - 64.
    desorption ionization-time - flight mass-spectrometry - primer sets - identification - phylogeny - pathogens - fungi - dna - epidemiology - punctiformis
    The genus Ramularia includes numerous phytopathogenic species, several of which are economically important. Ramularia eucalypti is currently the only species of this genus known to infect Eucalyptus by causing severe leaf-spotting symptoms on this host. However, several isolates identified as R. eucalypti based on morphology and on nrDNA sequence data of the ITS region have recently been isolated from other plant hosts, from environmental samples and also from human clinical specimens. Identification of closely related species based on morphology is often difficult and the ITS region has previously been shown to be unreliable for species level identification in several genera. In this study we aimed to resolve this species-complex by applying a polyphasic approach involving morphology, multi-gene phylogeny and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Six partial genes (ITS, ACT, TEF1-a, HIS3, GAPDH and RPB2) were amplified and sequenced for a total of 44 isolates representing R. eucalypti s.lat. and closely related species. A multi-gene Bayesian phylogenetic analysis and parsimony analysis were performed, and both the resulting trees showed significant support for separation of seven species in R. eucalypti s.lat., including two previously described (R. eucalypti and R. miae), four novel species here described (R. haroldporteri, R. glennii, R. mali and R. plurivora) and one undescribed Ramularia species (sterile). Additionally, Mycosphaerella nyssicola is newly combined in Ramularia as R. nyssicola. Main mass spectra (MSPs) of several R. eucalypti s.lat. strains were generated using MALDI-TOF MS and were compared through a Principal Component Analysis (PCA) dendogram. The PCA dendrogram supported three clades containing R. plurivora, R. glenni/R. mali and R. eucalypti/R. miae. Although the dendrogram separation of species differed from the phylogenetic analysis, the clinically relevant strains were successfully identified by MALDI-TOF MS
    Sexual development of Botrytis species
    Terhem, R.B. - \ 2015
    Wageningen University. Promotor(en): Pierre de Wit, co-promotor(en): Jan van Kan. - Wageningen : Wageningen University - ISBN 9789462574144 - 188
    botrytis - plantenziekteverwekkende schimmels - geslachtsontwikkeling - fylogenie - genomica - transcriptomica - paarsystemen - schimmelmorfologie - nieuwe soorten - botrytis - plant pathogenic fungi - sexual development - phylogeny - genomics - transcriptomics - mating systems - fungal morphology - new species

    Sexual Development of Botrytis Species

    PhD Thesis

    Razak bin Terhem

    The fruiting bodies of species in the genus Botrytis are called apothecia. Apothecia are ascomas with an open cup shape on top of a stipe. Currently there is little information on processes occurring during apothecium development in Botrytis species. The aims of the research described in this thesis were to study the mechanisms involved in apothecium development of Botrytis cinerea, and to describe the morphology of Botrytis species and their fruiting bodies. Chapter 2 describes a genome-wide transcriptome analysis of different stages of apothecium development and a study on the function of MAT genes in apothecium development of B. cinerea. Functional analyses by targeted knockout mutagenesis revealed that the MAT1-1-1 gene and the MAT1-2-1 gene are both required for the initiation of sexual development. By contrast, mutants in the MAT1-1-5 gene and the MAT1-2-4 resulted in normal development of stipes which, however, were defective in the formation of an apothecial disk, asci and ascospores. Chapter 3 describes the functional analysis of three hydrophobin genes in sclerotium and apothecium development of B. cinerea. All three genes contribute to sclerotium and apothecium development. Chapter 4 describes the structure of the MAT1-1 and MAT1-2 locus in Botrytis elliptica and the morphology of apothecia of B. elliptica. Chapter 5 provides a morphological and phylogenetic description of Botrytis deweyae, the only species within the genus that behaves as an endophyte and in certain conditions is able to cause disease on Hemerocallis plants. Chapter 6 discusses the results presented in this thesis and puts them in a broader perspective. A model of processes and mechanisms involved in apothecium development is proposed.

    Restyling Alternaria
    Woudenberg, J.H.C. - \ 2015
    Wageningen University. Promotor(en): Pedro Crous; Pierre de Wit, co-promotor(en): J.Z. Groenewald. - Wageningen : Wageningen University - ISBN 9789462574106 - 250
    alternaria - taxonomie - fylogenie - moleculaire taxonomie - plantenziekteverwekkende schimmels - alternaria - taxonomy - phylogeny - molecular taxonomy - plant pathogenic fungi

    The omnipresent dematiaceous hyphomycete genus Alternaria is associated with a wide variety of substrates including seeds, plants, agricultural products, humans, soil and even the atmosphere. It includes saprophytic, endophytic and pathogenic species, among which multiple plant pathogens, post-harvest pathogens, and human pathogens (causative agents of phaeohyphomycosis and hypersensitivity reactions). Molecular studies reveal that the Alternaria complex comprises nine genera. Within this complex several genera are non-monophyletic and Alternaria species cluster into multiple distinct species clades, which are not always correlated with species-groups based on morphological characteristics. The most commonly reported species in literature and type species of the genus Alternaria, A. alternata, also comprises one such species-group. The small-spored Alternaria species within this group are mainly described based on morphology and / or host-specificity, but are difficult to distinguish based on molecular techniques alone. As A. alternata is considered as one of the most prolific producers of fungal allergens and is reported as pathogen on over 100 host plants, correct species identification is of utmost importance. The research presented in this thesis discusses the taxonomic status of Alternaria and its related genera, with a further focus on the two biggest and most important species complexes; the large-spored A. porri and small-spored A. alternata species complexes. With the phylogenies and classifications presented in this thesis, more robust and understandable taxonomy and nomenclature in Alternaria and allied genera within the Alternaria complex are created.

    Chapter 1 gives a general introduction to the genus Alternaria and related genera. The history of the genus and its economic importance as plant pathogen, post-harvest pathogen, causative agent of phaeohyphomycosis and common allergen causing hypersensitivity reactions are summarized. The introduction of the morphological species complexes, based on characters of the conidia, the pattern of chain formation, and the nature of the apical extensions of conidia are treated. Molecular studies recognise seven Alternaria species-groups within the Alternaria complex. Besides Alternaria, eight other genera are assigned to the Alternaria complex based on molecular and morphological studies.

    Chapter 2 focusses on the relationship of Alternaria and its closely related genera within the broader Alternaria complex. The phylogenetic lineages within the Alternaria complex are delineated based on nucleotide sequence data of parts of the 18S nrDNA (SSU), 28S nrDNA (LSU), the internal transcribed spacer regions 1 and 2 and intervening 5.8S nrDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2) and translation elongation factor 1-alpha (TEF1) gene regions. The phylogenetic data reveal a Stemphylium clade sister to Embellisia annulata and a big Alternaria clade. The Alternaria clade contains six monotypic lineages and 24 internal clades, which are treated as sections of Alternaria. In order to create a stable phylogenetic taxonomy, and supported by i) a well-supported phylogenetic node in multiple analyses, ii) a high-similarity of clades within Alternaria based on SSU, LSU and ITS data, and iii) variation in the clade order between the different gene phylogenies, 13 genera are placed into synonymy with Alternaria. Embellisia annulata is synonymized with Dendryphiella salina, and together with D. arenariae placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, with asexual forms linked to Alternaria, cluster within the Pleosporaceae, as does Alternaria, but outside Alternaria s. str. The genus Alternariaster, described to accommodate Alternaria helianthi, clusters within the Leptosphaeriaceae.

    Chapter 3 describes the reappraisal of the genus Alternariaster. Alternaria helianthi, the causal agent of leaf spot on Helianthus annuus (sunflower) was segregated from Alternaria based on conidial morphology, and placed in the new genus Alternariaster. A multi-gene phylogeny of parts of the ITS, LSU, RPB2 and GAPDH gene regions placed a fungal pathogen associated with leaf spot on Bidens sulphurea (yellow cosmos) in Brazil in close relation with Al. helianthi. Based on the close phylogenetic relation to Al. helianthi, but distinct morphological and pathogenicity characters, the fungal pathogen associated with leaf spot on B. sulphurea is newly described as Al. bidentis.

    Chapter 4 treats the Alternaria species which form the largest section of Alternaria, sect. Porri. This section contains almost all Alternaria species with medium to large conidia with long beaks, some of which are important plant pathogens. A multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alternaria major allergen (Alt a 1) gene regions, supplemented with morphological and cultural studies, forms the basis for species recognition in this section. The polyphasic data reveal 63 species in sect. Porri, of which 10 are newly described, and 27 names are synonymized.

    Chapter 5 treats the small-spored Alternaria species, which reside in sect. Alternaria. A lot of confusion around the naming of species within this section exists, since the naming is mostly based on morphology and host-specificity, although the molecular variation is minimal. Whole genome sequencing, combined with transcriptome profiling and multi-gene sequencing of nine gene regions, SSU, LSU, ITS, GAPDH, RPB2, TEF1, Alt a 1, endopolygalacturonase (endoPG) and an anonymous gene region (OPA10-2), is used to create a clear and stable species classification in this section. The nine sequenced Alternaria genomes range in size from 32.0 - 39.1 Mb. The number of repetitive sequences varies significantly, with a relative low percentage of repeats within sect. Alternaria. The genome identity within sect. Alternaria is high, compared to the genome identity for isolates from other sections to the A. alternata reference genome. Similarly, a relative low percentage of single nucleotide polymorphisms (SNPs) were observed in genomic and transcriptomic sequences between isolates from sect. Alternaria, compared to the percentage of SNP’s found in isolates from different sections compared to the A. alternata reference genome. A set of core proteins was extracted from the genome and transcriptome data, and primers were designed on two eukaryotic orthologous group (KOG) protein loci with a relatively low degree of conservation within section Alternaria. The phylogenies from these two gene regions, KOG1058 and KOG1077, could not distinguish the described morphospecies within sect. Alternaria better than the phylogenies based on the nine commonly used gene regions for Alternaria. Based on genome and transcriptome comparisons and molecular phylogenies, Alternaria sect. Alternaria consists of only 11 phylogenetic species and one species complex. Thirty-five morphospecies are synonymized under A. alternata. The subclades that are formed by these isolates are incongruent between the different gene regions sequenced; no two genes show the same groupings for any of the over 100 isolates. A sequence-based identification guide is provided for the species which are now recognized in sect. Alternaria. None of the genes sequenced in this study can distinguish all of the species recognized here on its own.

    Chapter 6 investigates the molecular diversity of indoor Alternaria isolates in the USA, with the help of a phylogeographic / population genetic approach. Isolates collected throughout the USA were identified using ITS, GAPDH and endoPG gene sequencing, followed by genotyping and population genetic inference of the sect. Alternaria isolates and 37 reference isolates, using five microsatellite markers. Phylogenetic analyses revealed that 98 % (153 isolates) of the indoor isolates consisted of species from Alternaria sect. Alternaria. The remaining 2 % (three isolates) represented one sect. Infectoriae and two sect. Pseudoulocladium isolates. From the 153 isolates that belonged to sect. Alternaria, one could be assigned to A. burnsii, 15 to the A. arborescens species complex and the remaining 137 isolates were identified as A. alternata. Based on the microsatellite data, no specific indoor population could be distinguished. Population assignment analyses of the A. alternata isolates suggested that subpopulations did not exist within the sample, which we thus divided into four artificial subpopulations to represent four quadrants of the USA. Genotypic diversity was extremely high for all quadrants and a test for linkage disequilibrium suggested that A. alternata has a cryptic sexual cycle. The SouthWest-USA population displayed the highest level of uniqueness, based on private alleles. Intriguingly, the highest amount of gene flow, between SouthWest-USA and SouthEast-USA, correlated with the west-to-east movement of the antitrade winds. This suggests that indoor A. alternata isolates, although extremely diverse, have a continental distribution and high levels of gene flow over the continent.

    Chapter 7 discusses the data presented in this thesis. The implications of the performed studies are placed in a broader context, with a focus on the relation between morphology and the new species classification based on molecular tools and the use of genome data in contrast to multi-gene data.

    Production of interspecific Campanula hybrids by ovule culture: exploring the effecto of ovule isolation time
    Röper, A.C. ; Lütken, H. ; Christensen, B. ; Boutilier, K.A. ; Petersen, K.K. ; Müller, R. - \ 2015
    Euphytica 203 (2015). - ISSN 0014-2336 - p. 643 - 657.
    embryo rescue - inbreeding depression - breeding system - hybridization - incompatibility - trifolium - inheritance - phylogeny - endosperm - crosses
    The Campanula genus comprises several economically important ornamental plants species.Wide hybridisation is a method to increase phenotypic variability, but is limited due to interspecies hybridisation barriers.In this study we investigated whether ovule culture could be used to increase the success rate of interspecific hybridisation between C. portenschlagiana 9 C. poscharskyana and C. medium 9 C. formanekiana. The effect of different ovule isolation times on ovule germination in vitro was examined. In general, the number of collectible ovules and ovule germination was low. Interspecific hybrids between C. medium and C. formanekiana exhibited an increased number of viable ovules with later isolation time, but with different ovule germination rates. A parent-of-origin effect on both the number of collectible ovules and ovule germination was observed for C. medium 9 C. formanekiana. Histological analysis of embryo and endosperm development in collectible ovules isolated at different time points from interspecific crosses showed that the vast majority of ovules did not contain an embryo. When present, embryo development only progressed with ovule collection time in the C. medium and C. formanekiana crosses. The occurrence of miscoloured seedlings in interspecific crosses indicated incompatibilities between the parental lines that could not be prevented by reciprocal crossing. The low number of collectible ovules and germination rates might be inhibited due to fertilisation barriers.With this study, a protocol for ovule culture was established and the usefulness of ovule culture to obtain interspecific hybrids of selected Campanula species was demonstrated
    The butterfly plant arms-race escalated by gene and genome duplications
    Edger, P.P. ; Heidel-Fischer, H.M. ; Bekaert, K.M. ; Rota, J. ; Glockner, G. ; Platts, A.E. ; Heckel, D.G. ; Der, J.P. ; Wafula, E.K. ; Tang, M. ; Hofberger, J.A. ; Smithson, A. ; Hall, J.C. ; Blanchette, M. ; Bureau, T.E. ; Wright, S.I. ; dePamphilis, C.W. ; Schranz, M.E. ; Conant, G.C. ; Barker, M.S. ; Wahlberg, N. ; Vogel, H. ; Pires, J.C. ; Wheat, C.W. - \ 2015
    Proceedings of the National Academy of Sciences of the United States of America 112 (2015)27. - ISSN 0027-8424 - p. 8362 - 8366.
    evolutionaire genetica - co-evolutie - diversificatie - brassica - pieridae - papilionidae - glucosinolaten - fylogenie - evolutionary genetics - coevolution - diversification - brassica - pieridae - papilionidae - glucosinolates - phylogeny - diversity - defense - cytochrome-p450 - polymorphism - arabidopsis - metabolism - expression - speciation
    Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits.
    Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes
    Mandáková, T. ; Schranz, M.E. ; Sharbel, T.F. ; Jong, J.H.S.G.M. de; Lysak, M. - \ 2015
    The Plant Journal 82 (2015)5. - ISSN 0960-7412 - p. 785 - 793.
    holboellii complex - genus boechera - genome sequence - centric fission - brassicaceae - arabidopsis - centromere - phylogeny - arabis - reproduction
    Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes – the submetacentric Het' and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.
    Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae)
    Klaubauf, S. ; Tharreau, D. ; Fournier, E. ; Groenewald, J.Z. ; Crous, P.W. ; Vries, R.P. de; Lebrun, M.H. - \ 2014
    Studies in Mycology 79 (2014). - ISSN 0166-0616 - p. 85 - 120.
    rice blast fungus - magnaporthe-oryzae - juncus-roemerianus - molecular-data - fresh-water - grisea - phylogeny - genera - specificity - resistance
    Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii, M. poae and M. rhizophila produce asexual spores that differ from those of Pyricularia sensu stricto that has pyriform, 2-septate conidia produced on conidiophores with sympodial proliferation. Magnaporthe salvinii was recently allocated to Nakataea, while M. poae and M. rhizophila were placed in Magnaporthiopsis. To clarify the taxonomic relationships among species that are magnaporthe- or pyricularia-like in morphology, we analysed phylogenetic relationships among isolates representing a wide range of host plants by using partial DNA sequences of multiple genes such as LSU, ITS, RPB1, actin and calmodulin. Species of Pyricularia s. str. belong to a monophyletic clade that includes all P. oryzae/P. grisea isolates tested, defining the Pyriculariaceae, which is sister to the Ophioceraceae, representing two novel families. These clades are clearly distinct from species belonging to the Gaeumannomyces pro parte/Magnaporthiopsis/Nakataea generic complex that are monophyletic and define the Magnaporthaceae. A few magnaporthe- and pyricularia-like species are unrelated to Magnaporthaceae and Pyriculariaceae. Pyricularia oryzae/P. grisea isolates cluster into two related clades. Host plants such as Eleusine, Oryza, Setaria or Triticum were exclusively infected by isolates from P. oryzae, while some host plant such as Cenchrus, Echinochloa, Lolium, Pennisetum or Zingiber were infected by different Pyricularia species. This demonstrates that host range cannot be used as taxonomic criterion without extensive pathotyping. Our results also show that the typical pyriform, 2-septate conidium morphology of P. grisea/P. oryzae is restricted to Pyricularia and Neopyricularia, while most other genera have obclavate to more ellipsoid 2-septate conidia. Some related genera (Deightoniella, Macgarvieomyces) have evolved 1-septate conidia. Therefore, conidium morphology cannot be used as taxonomic criterion at generic level without phylogenetic data. We also identified 10 novel genera, and seven novel species. A re-evaluation of generic and species concepts within Pyriculariaceae is presented, and novelties are proposed based on morphological and phylogenetic data.
    Large-spored Alternaria pathogens in section Porri disentangled
    Woudenberg, J.H.C. ; Truter, M. ; Groenewald, J.Z. ; Crous, P.W. - \ 2014
    Studies in Mycology 79 (2014). - ISSN 0166-0616 - p. 1 - 47.
    south-africa - solani - themes - disease - blight - diagnostics - tomatophila - phylogeny - potatoes - dauci
    The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia.
    The Global Invertebrate Genomics Alliance (GIGA). 2014. Developing Community Resources to Study Diverse Invertebrate Genomes
    Pomponi, S.A. - \ 2014
    Journal of Heredity 105 (2014)1. - ISSN 0022-1503 - p. 1 - 18.
    marine natural-products - gene-expression - draft genome - tetranychus-urticae - human microbiome - whole-genome - fresh-water - evolution - phylogeny - coral
    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness.
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.