Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 20 / 43

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms
    Tang, Yongfu - \ 2017
    Wageningen University. Promotor(en): H.J. Wichers, co-promotor(en): J.J. Mes; C.C.F.M. Govers. - Wageningen : Wageningen University - ISBN 9789463437134 - 166
    polysaccharides - health - immunomodulatory properties - homeostasis - intestinal diseases - human nutrition research - polysacchariden - gezondheid - immunomodulerende eigenschappen - homeostase - darmziekten - voedingsonderzoek bij de mens

    Non-digestible polysaccharides (NDPs) are considered as important ingredients to support health. Among these health effects, immunomodulatory effects raised interests in the past decade. The intestine is the primary organ that interact with NDPs. The intestinal epithelial cells (IECs) form a dynamic physical barrier and together with associated immune cells determine for a large part our immune homeostasis. Studying the direct interaction between NDPs and intestinal and immune cells could help us to uncover the mechanism by which NDPs exert immunomodulatory effects and how NDPs can differ in this activity. In this thesis, we investigated the immunomodulatory effects of NDPs through interaction with intestinal immune cells using in vitro methods in order to characterise the NDPs and preselect NDPs with differential activity for further in vivo evaluations.

    The intestinal immune barrier is formed by various IECs and immune cells, which are introduced and their specific functions discussed in Chapter 1. NDPs could interact directly with both IECs and immune cells that sample in or from the lumen. The majority of IECs are enterocytes and most relevant immune cells responsible for sampling in the lumen have been characterised as macrophages, which leads us to focus on these cell types by in vitro approaches. In addition, basic information on NDPs and current status on health effects of NDPs both in vitro and in vivo are discussed.

    In Chapter 2, the direct response of IEC to NDPs stimulation was investigated. IECs form the largest surface of the body that, with a crucial role as barrier also, perform a role in signalling towards immune cells. We used 21-day transwell cultured Caco-2 to resemble the small intestinal enterocytes that form largest part of this intestinal layer. We first characterized the chemical composition of five NDPs which revealed different mono sugar composition, linkages of backbone and side chains and a wide range of MW (from 17 KDa to 2100 KDa). The NDPs could reduce translocation of FITC-Dextran of 4 kDa across the epithelial layer, potentially through physical interference. Gene expression analysis indicated the induction of unique gene expression characteristics in Caco-2 cells upon exposure to different NDPs. An arabinoxylan preparation from wheat and a lentinan-containing extract from shiitake mushrooms showed upregulation of gene expression of the NF-κB family and chemokines CCL20 and CXCL10. Besides these immune related changes by some NDPs, we also observed changes in receptor expression (like TLR2, CD14 and GPCRs) and other pathways, amongst which the cholesterol biosynthesis pathway.

    Macrophages, as the resident population of immune cells penetrating between or associating with close contact with the IECs, are generally classified as inflammatory (M1) or as tolerant (M2) macrophages. In Chapter 3, we set up a macrophage differentiation method based on primary blood cells and selected and validated M1 and M2 specific gene expression markers. Next, we analysed the effect when macrophages are exposed to NDPs and compared the resulting macrophages with M1 and M2 macrophages. Based on M1 and M2 markers we identified an alternative subset that we named MNDP. This MNDP was further studied by microarray analysis and revealed a commonly modulated set of genes, involved in migration, metabolic processes, cell cycle, and inflammatory immune function.

    In Chapter 4, we further functionally characterize these MNDP in comparison to M1 and M2 macrophages based on a set of functional assays. NDP-treated macrophages showed no IDO activity and showed an inhibited antigen uptake and processing capacity compared to M1 and M2 macrophages. Also their phagocytic capacity was reduced compared to both M1 and M2 macrophages. Furthermore, the alternative expression pattern for NDP-treated macrophages, as demonstrated by gene expression, was confirmed by protein measurements. The signature mix of the chemokines CCL1, CCL5, CCL20, CCL24, CXCL8, and IL1β secreted by MNDP, and in particular when macrophages were treated with Naxus, was shown to induce a recruitment of monocytes.

    As macrophage plasticity could be essential for intestinal immune homeostasis, resolving activity of inflammatory responses upon a challenge is important. Besides, redirecting differentiation and function of tolerant macrophages can also be beneficial to the intestinal immune status. In Chapter 5, we analysed plasticity of M1 and M2 macrophages to NDPs exposure. Macrophage plasticity was demonstrated as M1 and M2 could be skewed to an alternative subset indicated by a dedicated set of gene expression markers, selected to characterize M1, M2 and MNDP macrophages. In addition, phagocytosis and antigen processing capacity of both M1 and M2 were decreased by the NDP Naxus. Besides, Naxus could change the secretion of cytokines by macrophages that previously were differentiated towards M1 and M2. For M2, this resulted in an increase of recruitment of monocytes by M2 macrophages.

    In Chapter 6, we discussed the important findings in each chapter of this thesis together with current literature, and gave a general perspective on this research line focussing on the immunomodulating activity of NDPs and the direction for future research. We suggested NDPs in terms of Naxus as candidate for guiding investigations in ex vivo and in vivo studies for immunomodulation of intestinal disease.

    Targeted and non-targeted effects in cell wall polysaccharides from transgenetically modified potato tubers
    Huang, J.H. - \ 2016
    Wageningen University. Promotor(en): Harry Gruppen; Henk Schols. - Wageningen : Wageningen University - ISBN 9789462576292 - 126
    potatoes - cell walls - polysaccharides - transgenic plants - pectins - tubers - xyloglucans - genetically engineered foods - galactans - characteristics - nontarget effects - effects - aardappelen - celwanden - polysacchariden - transgene planten - pectinen - knollen - xyloglucanen - genetisch gemanipuleerde voedingsmiddelen - galactanen - karakteristieken - onbedoelde effecten - effecten

    The plant cell wall is a chemically complex network composed mainly of polysaccharides. Cell wall polysaccharides surround and protect plant cells and are responsible for the stability and rigidity of plant tissue. Pectin is a major component of primary cell wall and the middle lamella of plants. However, pectin biosynthesis in planta and the mechanisms underlying the influence of structural differences arising from a modified biosynthesis machinery on functional properties remain poorly understood. In our research, the changes in the chemical structures of cell wall polysaccharides after transgenic modification of potato tuber polysaccharides were examined. The cell wall material from potato wild-type varieties, from known and from new potato transgenic lines targeting changes of the homogalacturonan or rhamnogalacturonan I backbone were isolated and characterized. The modified cell wall polysaccharides were examined by determining their individual monosaccharide levels on fresh weight base and their cell wall characteristic parameters, and levels of acetylation and methyl esterification of cell wall pectin. Data for both targeted and non-targeted structures of cell wall polysaccharides from wild-type and transgenic potatoes were obtained. A shorter galactan side chain was found from the buffer soluble pectin and calcium bound pectin of β-galactosidase (β-Gal) transgenic lines. All pectin fractions from rhamnogalacturonan lyase (RGL) transgenic lines had less galactan chains attached to their rhamnogalacturonan I backbones. Two uridine diphosphate-glucose 4-epimerase (UGE) transgenic lines, UGE 45 and UGE 51, had diverse effects on length of the galactan side chain. The xyloglucans from the RGL and UGE transgenic lines retained its XXGG building blocks but differed in the proportion of repeating units compared to the respective wild-type varieties. In contrast, the β-Gal transgenic lines predominantly consisted of XXXG-type xyloglucan in the 4 M alkali extract, but showed XXGG-type building blocks in 1 M alkali extract. In addition, a quick-screening method was validated and used to analyze 31 transgenic lines and their respective wild-type potato varieties. An overall comparison of pectin backbone, pectin side chains, acetylation and methyl-esterification of pectin, pectin content and (hemi)cellulose content of cell wall polysaccharides from these transgenic lines provided a better insight in the frequency, level and combination of both targeted and non-targeted structural changes compared to that of their respective wild-type varieties. The same evaluation method was used to correlate cell wall composition in wild-type and selected transgenic lines and their established gene expression with the texture of corresponding cooked potato cubes. Changed physical properties for the genetically modified tubers could be connected to specific cell wall characteristics. Tubers from transgenic lines containing cell wall pectin with short galactan side chains were less firm after cold processing compared to wild-type tubers. The enhanced understanding of transgenic modifications of potato tubers resulting into significant targeted and non-targeted modifications in cell wall polysaccharides will lead to a better selection of potato lines with tailored cell wall characteristics and desired properties of the tubers during processing.

    Potato cell walls are composed of pectin, hemicellulose and cellulose. Cell wall polysaccharides are responsible for the stability, rigidity and flexibility of plant tissue. Pectin, a major component of primary plant cell walls, primarily consists of homogalacturonan (HG) and rhamnogalacturonan I (RG-I). To understand the structure–function relationships of potato cell wall pectin, this study aimed to identify the characteristics of both pectin and other polysaccharides as present in cell wall material (CWM) and of individual polysaccharide populations from wild-type potato varieties and their respective transgenic potato lines.

    Chapter 1 gives a general introduction to the fine chemical structures of potato cell wall polysaccharides, the main models of cell wall architecture and the cell wall-degrading enzymes, which include pectinases, hemicellulases and cellulases. In addition, transgenic modification of the cell wall through the heterologous expression of various enzymes from fungal or plant origin that could modify potato cell wall polysaccharides in planta is addressed. Transgenic modifications of potato cell wall polysaccharides that targeted pectin structures and cellulose levels are summarised. However, due to unsuccessful starch removal during CWM isolation and incomplete analysis of CWM yield and composition, characteristics regarding the different cell wall polysaccharides from previously-studied transgenic potato lines are hardly available.

    CWMs were extracted from the Karnico (wild-type) potato and its transgenic lines that expressed either β-galactosidase or rhamnogalacturonan lyase (Chapter 2). Improved starch removal procedures proved to be successful. Pectic polysaccharides were fractionated from CWMs of wild-type potato and its transgenic lines β-Gal-14 and RGL-18. Most β-Gal-14 pectin populations had less galactose (Gal) than wild-type, indicating that the transgenic line had shorter galactan side chains, although the side chain length differed for individual pectin populations. The ratio of HG:RG-I was introduced to evaluate the pectin backbone structure. High HG:RG-I ratios were consistently found in RGL-18 pectic polysaccharide populations. A low level of RG-I segments in combination with lower Gal contents indicated the removal of the galactan-rich RG-I segments in all pectin populations of RGL transgenic lines. In addition, RGL-18 transgenic modification increased the methyl-esterification and lowered the acetylation of pectins present in hot buffer extracts, when compared to wild-type. No effect on pectin esterification was found for β-Gal transgenic lines. Side effects of the mutation generated unexpected changes in the various pectin populations.

    The xyloglucan structure was extensively modified after transgenic modification of the pectin structure. Two xyloglucan extracts were obtained from the Karnico and its β-Gal-14 and RGL-18 transgenic lines (Chapter 3). The extracts of the Karnico and RGL-18 lines were mainly comprised of the XXGG-type xyloglucan as represented by XXGG and XSGG as predominant repeating units. In contrast, the XXXG-type xyloglucan was primarily present in the β-Gal-14 4 M alkali extract built up by LLUG repeats, although XXGG type of xyloglucan was present in the 1M alkali extract. Both the RGL and β-Gal transgenic lines had different proportions of xyloglucan building blocks (XSGG/XXGG ratios) than wild-type. After transgenic modification of pectin backbone or pectin side chains, the xyloglucan structures has been biosynthetically modified by plant itself.

    Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyses the conversion of UDP-glucose into UDP-galactose, which hypothetically should lead to more galactose being built into the cell wall polysaccharides. CWMs from the Kardal (wild-type) potato and its UGE45-1 and UGE51-16 transgenic lines were isolated, fractionated and characterised (Chapter 4). Both the UGE45 and UGE51 genes encoded for UGE enzymes, but the corresponding transgenic lines exhibited different modifications of the galactan side chains and of other cell wall structures. The Gal content of CWM from the UGE45-1 transgenic line was 38% higher than that of the wild-type and resulted in longer pectin side chains. The Gal content present in CWM from UGE51-16 was 17% lower than that of wild-type, which resulted in a slightly shorter galactan side chains for most pectin populations. Both UGE transgenic lines showed a decreased acetylation and an increased methyl-esterification of the cell wall pectin. Side effects were found in the xyloglucan structures of the transgenes as reflected by different proportions of XSGG/XXGG repeating units in comparison to wild-type. Pectin side chain biosynthesis had not only a varying level of galactan side chain modification, but also influenced the structure and possibly the interaction of other cell wall polysaccharides.

    In Chapter 5, a new screening strategy is introduced to evaluate higher numbers of transgenic potato tubers via CWM yield and sugar composition. A total of four wild-type potato varieties and 31 transgenic lines were evaluated to determine the effects on targeted structures including RG-I or HG pectin backbone elements, galactan or arabinogalactan side chains, acetyl groups of pectin and cellulose levels. Modification of the pectin backbone or pectin side chains in the transgenic lines has either a simultaneous increase or simultaneous decrease of HG:RG-I ratio, side chain length and methyl-esterification of pectin. The pectin esterification transgenic line exhibited only limited side effects. The cellulose level targeted lines had also high HG:RG-I ratios, longer galactan chains and similar pectin content compared to the wild-type, indicative for a less branched pectin backbone with longer side chains. From the monosaccharide composition data, various pectin and cell wall characteristics parameters are suggested as powerful indicators of cell wall polysaccharide structure.

    In Chapter 6, the achievements of this research are summarised and discussed in the context of potato cell wall architecture. The strategy and outcome of a quick screening method for multiple transgenic lines and an in-depth analysis of individual pectin and xyloglucan populations for the evaluation of potato CWMs is discussed. Furthermore, the texture of steam-cooked potatoes and the stability of potato cubes after freeze-thaw cycles are correlated with gene expression and cell wall composition in wild-type and selected transgenetically modified potato tubers. CWMs from transgenetically modified potatoes showed different physical properties during processing. In isolated CWMs, acetylation of cell wall pectin, molar Gal levels and starch content were the main parameters that could be related to the texture or firmness of tubers. Tubers from transgenic lines that resulted in shorter pectin side chains felt apart more easily after several freeze-thaw cycles than wild-type tubers and tubers with an increased length of pectin side chains. The modification of both targeted as well as non-targeted structures have now been shown to occur in many different potato transgenic lines, but precise mechanisms and consequences for the cell wall architecture remain unclear. Research performed so far, as well as research needed for getting a better understanding of plant cell wall architecture, is discussed.

    Plants4Cosmetics : perspectives for plant ingredients in cosmetics
    Boeriu, C.G. - \ 2015
    Wageningen : Wageningen UR - Food & Biobased Research (Report / Wageningen UR Food & Biobased Research 1603) - 38
    cosmetics - plants - flavonoids - phenols - pigments - plant pigments - polysaccharides - geranium - hyacinthus - chrysanthemum - orchidaceae - skin - hair - oil plants - medicinal plants - natural products - biobased chemicals - biobased economy - cosmetica - planten - flavonoïden - fenolen - pigmenten - plantenpigmenten - polysacchariden - geranium - hyacinthus - chrysanthemum - orchidaceae - huid - haar - olieleverende planten - medicinale planten - natuurlijke producten - chemicaliën uit biologische grondstoffen - biobased economy
    In opdracht van Bio Base Westland en de TKI Tuinbouw Koepel PPS Plantenstoffen, heeft Wageningen UR – Food & Biobased Research een exploratieve desktop studie uitgevoerd gericht op de identificatie van veelbelovende routes voor de valorisatie van plantinhoudstoffen - waaronder ook reststromen uit de tuinbouw - voor de cosmetische industrie. Een uitgebreide analyse van de beschikbare informatie werd uitgevoerd om de mogelijkheden voor de Nederlandse tuinbouwsector te bepalen. Er is gekeken naar marktkansen in de cosmetische industrie met inbegrip van natuurlijke en biologische ingrediënten.
    Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism
    Gilbert, M.S. - \ 2015
    Wageningen University. Promotor(en): Wouter Hendriks, co-promotor(en): Walter Gerrits; Henk Schols. - Wageningen : Wageningen University - ISBN 9789462576032 - 171
    vleeskalveren - lactose - kunstmelk - polysacchariden - glucose - fructose - glycerol - zetmeelvertering - metabolisme - fermentatie - kalvervoeding - diervoeding - voedingsfysiologie - veal calves - lactose - filled milk - polysaccharides - glucose - fructose - glycerol - starch digestion - metabolism - fermentation - calf feeding - animal nutrition - nutrition physiology

    Summary PhD thesis Myrthe S. Gilbert

    Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolism

    Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves originates from the MR. Calf MR contains 40 to 50% lactose, originating from whey, a by-product from cheese production. High and strongly fluctuating dairy prices are a major economic incentive to replace lactose from the calf MR by alternative energy sources. The objective of this thesis was to study the effects of replacing lactose from calf MR on nutrient digestion and fermentation and post-absorptive metabolism.

    In Chapter 2 and 3, four starch products (SP) were evaluated for replacing lactose. The four SP differed in size and branching, and consequently required different ratios of starch-degrading enzymes for their complete hydrolysis to glucose. Gelatinized starch required α-amylase and (iso)maltase; maltodextrin required (iso)maltase and α-amylase; maltodextrin with α-1,6-branching required isomaltase, maltase and α-amylase and maltose required maltase. In Chapter 2, adaptation to these SP was assessed during 14 weeks, using a within-animal titration study. Forty male Holstein-Friesian calves (n = 8 per treatment) were assigned to either a lactose control MR or one of four titration strategies, each testing the stepwise exchange of lactose for one of the SP. For control calves, fecal dry matter (DM) content and fecal pH did not change over time. The response in fecal DM content and fecal pH in time did not differ between SP treatments and decreased linearly with 0.57% and 0.32 per week, respectively, where one week corresponded to an increase in SP inclusion of 3%. This indicates that the capacity for starch digestion was already exceeded at low inclusion levels, resulting in SP fermentation. All SP required maltase to achieve complete hydrolysis to glucose and it was, therefore, suggested that maltase is the rate-limiting enzyme in starch digestion in milk-fed calves.

    Following the titration, a fixed inclusion level of 18% of the SP in the MR was applied. Effects on starch-degrading enzyme activity, nutrient disappearance, SP fermentation and jugular glucose appearance were measured (Chapter 3). Lactase activity in the brush border was high in the proximal small intestine of all calves, resulting in a high apparent ileal disappearance of lactose (≥ 99% of intake). Maltase and isomaltase activities in the brush border were not increased for any of the SP treatments. Luminal α-amylase activity was lower in the proximal small intestine but greater in the distal small intestine of SP-fed calves compared to control calves. This amylase activity in the distal small intestine of SP-fed calves might have been of microbial origin. Apparent SP disappearance did not differ between SP treatments. The difference between apparent ileal (62%) and total tract (99%) SP disappearance indicated substantial SP fermentation in the large intestine (37% of intake). In addition, total tract SP fermentation was quantified using fecal 13C excretion which originated from the naturally 13C-enriched corn SP. Total tract SP fermentation averaged 89% of intake, regardless of SP treatment. MR leaking into the reticulorumen was measured as the recovery of Cr in the reticulorumen at slaughter after feeding MR pulse-dosed with Cr 4h prior to slaughter. MR leaking into the reticulorumen averaged 11% for SP-fed calves. By difference, this leaves 41% of the SP intake fermented in the small intestine. This coincided with increased fecal nitrogen (N) and DM losses for SP-fed calves. However, apparent total tract crude fat disappearance tended to increase when replacing lactose with SP. The substantial SP fermentation indicates that only 10% of the SP intake was enzymatically hydrolyzed and absorbed as glucose. This was in agreement with the marginal increase in 13C enrichment in peripheral plasma glucose after feeding naturally 13C-enriched gelatinized starch and maltose, compared to a clear increase after feeding naturally 13C-enriched lactose to control calves. It was concluded that fermentation, rather than enzymatic digestion, is the main reason for small intestinal starch disappearance in milk-fed calves. The expected decrease in growth performance with such extensive SP fermentation is partially compensated by the greater crude fat digestion and possibly by a reduced urinary glucose excretion when replacing lactose with SP.

    Glucose, fructose and glycerol do not require enzymatic hydrolysis and can be absorbed directly from the small intestine. However, these lactose replacers might differentially affect glucose and insulin metabolism and with that energy partitioning. The effects of partly replacing lactose with glucose, fructose or glycerol on energy and N partitioning and glucose homeostasis and insulin sensitivity were, therefore, studied in Chapter 4 and 5. Forty male Holstein-Friesian calves either received a lactose control MR or a MR in which one third of the lactose was replaced with glucose, fructose or glycerol (n = 10 per treatment). Energy and N retention were not affected by MR composition. Fructose absorption from the small intestine was incomplete resulting in fructose fermentation. This resulted in fecal losses of DM, energy and N and the lowest numerical energy and N retention for fructose-fed calves. Postprandial plasma concentrations of glucose exceeded the renal threshold for glucose in glucose-fed calves and control calves, which resulted in urinary glucose excretion. Glycerol was likely excreted with the urine of glycerol-fed calves. Oxidation of glucose, fructose and glycerol was quantified by feeding a single dose of [U-13C]glucose, [U-13C]fructose or [U-13C]glycerol with the MR and subsequently measuring 13CO2 production. Oxidation of lactose replacers did not differ between lactose replacers and averaged 72% of intake. However, the time at which the maximum rate of oxidation was reached was delayed for fructose-fed compared to glucose-fed and glycerol-fed calves, indicating that fructose was converted into other substrates before being oxidized. Conversion of fructose and glycerol into glucose was confirmed by an increase in 13C enrichment of peripheral plasma glucose after feeding [U-13C]fructose and [U-13C]glycerol, respectively. Insulin sensitivity did not differ between MR treatments, but was already low at the start of the experiment at 15 weeks of age and remained low throughout the experiment. It was concluded that glucose and glycerol can replace one third of the lactose from the calf MR, but that inclusion of fructose should be lower to prevent incomplete absorption from the small intestine.

    In literature and the studies in this thesis, high inter-individual variation in growth performance was found in veal calves. The experiment described in Chapter 6 was, therefore, designed to assess the predictability of later life growth performance by charactering calves in early life. In addition, it was examined whether the ability of calves to cope with MR in which lactose is partially replaced by alternative energy sources can be predicted. From 2 to 11 weeks of age, male Holstein-Friesian calves were fed a lactose control MR and solid feed according to a practical feeding scheme and were characterized individually using targeted challenges related to feeding motivation, digestion, post-absorptive metabolism, immunology, behavior and stress. Based on the results in Chapter 4, a combination of glucose, fructose and glycerol in a 2:1:2 ratio was used to replace half of the lactose from the MR (GFG). From 11 to 27 weeks of age, calves received a lactose control MR or the GFG MR (n = 65 per treatment). Growth performance from 11 to 27 weeks of age tended to be lower for GFG-fed than for control calves (-25 g/d). Measurements in early life explained 12% of the variation in growth performance in later life. However, this was mainly related to variation in solid feed refusals. When growth performance was adjusted to equal solid feed intake, only 4% of the variation in standardized growth performance in later life, reflecting feed efficiency, could be explained by early life measurements. This indicates that > 95% of the variation in feed efficiency in later life could not be explained by early life characterization. It is hypothesized that variation in health status explains substantial variation in feed efficiency in veal calves. Significant relations between fasting plasma glucose concentrations, fecal dry matter and fecal pH in early life and feed efficiency in later life depended on MR composition. These measurements are, therefore, potential tools for screening calves in early life on their ability to cope with a MR in which half of the lactose is replaced by glucose, fructose and glycerol (in a 2:1:2 ratio).

    The studies reported in this thesis demonstrate that glycerol, glucose and a combination of glucose, fructose and glycerol in a 2:1:2 ratio are promising lactose replacers. The effects of replacing lactose by other carbohydrate or energy sources described in this thesis are required to evaluate the potential of lactose replacers for inclusion in calf milk replacers and provide input for feed evaluation for calves and ruminants.

    the role of soluble and insoluble fibers during fermentation of Chicory root pulp
    Ramasamy, U. - \ 2014
    Wageningen University. Promotor(en): Harry Gruppen; Henk Schols. - Wageningen : Wageningen University - ISBN 9789461739650 - 152
    cichorei - pulp - vezels - fermentatie - celwandstoffen - polysacchariden - chicory - pulps - fibres - fermentation - cell wall components - polysaccharides

    This thesis was aimed at understanding the in vitro fermentability of soluble and insoluble fibers in chicory root pulp (CRP). First, CRP and ensiled chicory root pulp (ECRP) were characterized for cell wall polysaccharides (CWPs). Both CRP and ECRP were rich in CWPs (56-58 w/w (%)) and had rather similar sugar compositions. The CWPs consist of 62 % pectin, 11% hemicellulose and 27% cellulose. Pectin and xyloglucan were acetylated and the rhamnogalacturonan-I segments of pectin were branched mostly with arabinan. Compared to CRP, ECRP has four times more soluble pectin.

    In vitrofermentability in a batch model for 24 h using human faecal inoculum, showed that fibers in both CRP (51% carbohydrate utilisation) and ECRP (59% carbohydrate utilisation) were fermentable, especially pectin (80-87%). The increased levels of soluble pectin (arabinan, homogalacturonan and galactan) and the hypothesized open cell wall structure in ECRP contributed to a quicker fermentation and a higher level of carbohydrate utilization compared to CRP. In contrast to batch fermentation, fermentation in the dynamic TNO In vitro model of the colon (TIM-2) was rapid (57% carbohydrate utilisation in 2 h). ECRP carbohydrates (85%) were less fermented in 24 h compared to CRP carbohydrates (92%) due to lower utilisation of ECRP insoluble fibers than CRP insoluble fibers. It was hypothesized that soluble fibers that are readily fermentable and dominantly present in ECRP, programmed the microbiota in TIM-2 to fully adapt to these soluble fibers. After their utilization, the microbiota was not able to adapt towards the fermentation of insoluble fibers.

    Analysis of enzyme activities during batch fermentation of CRP showed increased levels of arabinofuranosidase, β-galactosidase, endo-arabinanase, endo-galactanase, exo-polygalacturonase, pectin de-esterifying enzymes and endo-polygalacturonase. They synergistically contributed to degrading pectin in CRP from 12 to 24 h of fermentation.

    Water holding capacity and enzymatic modification of pressed potato fibres
    Ramasamy, U. - \ 2014
    Wageningen University. Promotor(en): Harry Gruppen, co-promotor(en): Mirjam Kabel. - Wageningen : Wageningen University - ISBN 9789461739643 - 156
    aardappelpulp - aardappelen - vezels - celwandstoffen - polysacchariden - waterbergend vermogen - hydrolyse - enzymen - potato pulp - potatoes - fibres - cell wall components - polysaccharides - water holding capacity - hydrolysis - enzymes

    Cell wall polysaccharides (CWPs) contribute to the water holding capacity (WHC) of fibre rich feeds, such as pressed potato fibres (PPF). However, the role of CWPs on the WHC of PPF was unidentified so far.

    PPF was characterized to be abundant in arabinogalactan (AG) linked rhamnogalacturonan-I (RG-I), homogalacturonan (HG) and cellulose, next to which xyloglucan (XG) contributed the most of the hemicellulosic CWPs. The CWP network in potatoes was loosened upon starch extraction of potatoes and solubilized HG-RG-I-AG.

    Analyses of the WHCs upon enzyme treatments indicated that the WHC of PPF was mainly caused by a network of insoluble, non-cellulosic CWPs such as pectic CWPs (HG-RG-I-AG) and XG. Findings in this thesis showed that AGs were better degraded than xyloglucans (XGs). Since XGs were found to be equally important in contributing to the WHC as AGs, the substantial removal of AGs, as well as XGs, should be advantageous to lower the WHC.

    Other than lowering the WHC, the use of a pectinase-rich preparation improved the recovery of starch from potatoes by the degradation of mainly pectic CWPs, in particular pectic AG side chains and HG. The degradation of arabinan was observed to be inhibited by components in potato juice (PJ).

    Fate of rapeseed meal polysaccharides during digestion in pigs and poultry : effect of processing and enzyme addition
    Pustjens, A.M. - \ 2013
    Wageningen University. Promotor(en): Harry Gruppen, co-promotor(en): Mirjam Kabel; Walter Gerrits. - S.l. : s.n. - ISBN 9789461736604 - 184
    raapzaad - raapzaadmeel - polysacchariden - spijsvertering - varkens - pluimvee - voedermiddelbewerking - enzymen - rapeseed - rapeseed oilmeal - polysaccharides - digestion - pigs - poultry - feed processing - enzymes

    In this thesis, the fate of non-starch polysaccharides (NSP) from rapeseed meal (RSM) during fermentation in vitro and in vivo was studied. The aim was to understand and improve the fermentation of NSP from RSM in poultry and pigs, by processing and enzyme addition. First, the NSP-structures in RSM were characterized as being branched arabinan, arabinogalactan type II, homogalacturonan, glucurono-xylan, XXGG- and XXXG-type xyloglucan, and cellulose. Second, RSM was processed using shear, heat, and acid prior to in vitro incubation, in the presence or absence of pectolytic enzymes. Acid-treatment combined with pectolytic enzymes was the best option to improve NSP-solubilization in vitro. Unprocessed and acid-extruded RSM with or without addition of enzymes were fed to broilers. In broilers, 22% of the NSP in unprocessed RSM could be fermented, which only significantly improved to 38% by addition of commercial pectolytic enzymes. In broilers’ excreta, XXXG-type xyloglucan, (glucurono-)xylan, arabinan, and cellulose remained unfermented. Unprocessed and acid-extruded RSM was also fed to growing pigs and NSP-fermentation was followed along the digestive tract. In pigs, at the terminal ileum 22% of the NSP was cumulatively fermented and total tract around 70% was fermented. Acid-extrusion improved total tract NSP-fermentability in pigs numerically by 4% points. Water-soluble carbohydrates were nearly completely fermented. In the feces some rhamnogalacturonan, (branched) arabinan, linear xylan, XXXG-type xyloglucan, galactomannan, and cellulose remained. Surprisingly, during alkaline extraction of the broilers’ excreta and pigs’ feces, around 40% (w/w) of the insoluble carbohydrates was released as glucosyl- and/or uronyl-rich carbohydrates, probably originally present via ester-linkages or hydrogen-bonding within the cellulose-lignin network. These linkages are expected to hinder complete NSP-fermentation.

    Analytical profiling of plant cell wall polysaccharides
    Westphal, Y. - \ 2010
    Wageningen University. Promotor(en): Harry Gruppen; Fons Voragen, co-promotor(en): Henk Schols. - [S.l.] : S.n. - ISBN 9789085857068 - 168
    polysacchariden - celwandstoffen - chemische analyse - analytische methoden - polysaccharides - cell wall components - chemical analysis - analytical methods
    Keywords: High performance liquid chromatography, capillary electrophoresis, MALDI-TOF
    mass spectrometry, NMR, cell wall oligosaccharides, arabinan, Arabidopsis thaliana, cell wall degrading enzymes, profiling

    The plant cell wall polysaccharides cellulose, hemicelluloses and pectins are very heterogeneous and complex structures consisting of at least 20 different sugars and
    30 different linkage types. Additionally, hemicelluloses and pectins might be acetylated and/or feruloylated. Furthermore, pectins carry methyl esters. The degree and distribution of these modifications may vary significantly depending on source and developmental stage. In this research several analytical tools were developed for the analysis of complex mixtures of cell wall derived oligomers.
    The combination of 1) the use of pure and well-defined cellulases, hemicellulases and pectinases, and 2) the detection of the oligosaccharides released by MALDI-TOF MS and CE-LIF resulted in a screening method for Arabidopsis cell wall mutants, which addresses all enzyme-accessible polysaccharides in the cell wall.
    Porous graphitized carbon (PGC)-HPLC with evaporative light scattering and mass
    detection was introduced to a broad range of neutral and acidic cell wall polysaccharide derived oligosaccharides and separation of almost all oligosaccharides under investigation was achieved. The used gradient ensured 1) a sufficient separation of many oligosaccharides and 2) a sequential elution of first the neutral and then the acidic oligosaccharides. This elution behavior in combination with online-recorded MSn analysis facilitates the identification of (unknown) peaks.
    A wide range of branched arabino-oligosaccharides was isolated from sugar beet arabinan and characterized with NMR. HPAEC was demonstrated to have insufficient
    resolution to separate all linear and branched arabino-oligosaccharides. Therefore, PGC-HPLC-ELSD/MS and CE-LIF-MS were explored for the separation and detection of isomeric arabino-oligomers and were demonstrated to perform well. The combination of the controlled enzyme treatment, the predictive retention behavior on PGC-material, and the LC/CE-MS2 fragmentation patterns led to the prediction of the structures of unknown branched arabino-oligosaccharides in a complex mixture.
    Enzymatic production of hyaluronan oligo- and polysaccharides
    Kooy, F.K. - \ 2010
    Wageningen University. Promotor(en): Gerrit Eggink; Hans Tramper, co-promotor(en): Carmen Boeriu. - [S.l. : S.n. - ISBN 9789085856481 - 174
    hyaluronzuur - derivaten - oligosacchariden - polysacchariden - industriële microbiologie - industriële enzymen - hyaluronic acid - derivatives - oligosaccharides - polysaccharides - industrial microbiology - industrial enzymes
    Hyaluronan oligo- and polysaccharides are abundant in the human body. Depending on the chain length, hyaluronan is an important structural component or is involved in influencing cell responses during embryonic development, healing processes, inflammation and cancer. Due to these diverse roles of hyaluronan, there are multiple applications already in use or in development, such as supplementation of fluid in eyes and joints, cosmetic tissue augmentation, enhancing wound healing, tissue engineering, cancer treatment, controlled drug release and targeted drug delivery. State-of-the-art hyaluronan production techniques include bacterial fermentation to produce long hyaluronan polymers with a small chain length distribution and in vitro enzymatic systems to produce hyaluronan oligosaccharides of one chain length. Both production strategies make use of hyaluronan synthase (HAS), an enzyme that elongates UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc) into hyaluronan.

    The main question in hyaluronan production today is how the chain length of the products can be controlled. Since most production processes use hyaluronan synthases, the aim of this thesis was to elucidate the polymerization mechanism of Pasteurella multocida hyaluronan synthase (PmHAS) from a biochemical point of view. In addition, the acquired knowledge is used for improving the control on hyaluronan chain length in polymerization reactions using PmHAS. Valuable information important for production processes on the intrinsic properties of the enzyme, such as substrate affinity, can be obtained by kinetic studies using single-step elongations. Kinetic studies also provide insights on how polymerization is achieved and, combined with structural studies, the identification of amino acid residues that are important for polymerization. This knowledge can be used for improving the hyaluronan synthesis performance of the enzyme.

    Kinetic studies require purified substrates in quantities of mg-scale. Hyaluronan (HA) oligosaccharides were obtained through stepwise hyaluronan cleavage using hyaluronidase and consecutive separation of the reaction mixture by flash-chromatography (Chapter 2). The enzymatic hydrolysis was optimized by experimental design studies with pH, enzyme concentration and reaction time as parameters. Empirical models were developed for the yield of each individual target HA oligosaccharide using the results from a central composite design. Selective production of short HA oligomers (HA ≤ 10) or longer oligosaccharides (HA > 10) was made possible through implementation of the reaction conditions indicated by the empirical models. Separated HA oligomers were characterized by a combination of anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrometry with time-off-flight analysis. Using these techniques, the desired quantities of purified target HA oligosaccharides (n = 4, 6, 8 and 10) were obtained and used in further studies.

    Besides the single-step elongations assessed in kinetic studies, full polymerization studies with both UDP-sugars available were used to investigate the influence of substrate concentrations on the chain length distribution of the hyaluronan products. In order to quantify all oligosaccharides formed during PmHAS polymerization in μl-scale reactions, HA templates consisting of a fluorophore-labeled HA tetrasaccharide (HA4) were generated (Chapter 3). A fast, simple and sensitive assay was developed based on fluorophore-assisted carbohydrate electrophoresis (FACE) that was used for quantification and characterization of PmHAS polymerization products.

    The individual β1,3-glucuronyl-transferase (UA-transferase) and β1,4-N-acetylglucosamine-transferase (NAc-transferase) activities of PmHAS were investigated separately using kinetic studies, where the reaction of an HA oligosaccharide was followed with, respectively, UDP-GlcUA or UDP-GlcNAc in single-step elongations. In Chapter 4, the influence of HA oligosaccharide length (n = 4, 5, 6, 7, 8 and 9) on the polymerization reaction was investigated by one-substrate kinetics, varying only the HA oligosaccharide concentration at saturating UDP-sugar concentration. These reactions followed Michaelis Menten kinetics, although HA oligosaccharides may become inhibiting at elevated concentrations above 6 mM. The observed kcat values increased with increasing HA oligosaccharide length to a constant value at HA6 and HA7. The specificity constant kcat/Km values for HA oligosaccharides in the UA-transferase domain increased at increasing oligosaccharide length, whereas in the NAc-transferase domain kcat/Km values were constant at a low value. This indicates that there are two separate oligosaccharide binding sites of different lengths, one in each transferase domain of PmHAS. In Chapter 4, it was demonstrated that the chain-lenght distribution in PmHAS polymerization reactions can be decreased, and thus improved, by using saturating concentrations of both HA oligosaccharides and UDP-sugars.

    Chapter 5 describes two-substrate kinetic studies, where in single-step elongations both HA oligosaccharide and one of the UDP-sugars were varied, to investigate the polymerization mechanism of each individual transferase domain in PmHAS. Dead-end inhibition studies and goodness-of-fit parameters were used to distinguish between two-substrate models. From this analysis follows that both transferase domains elongate the UDP-sugar through a sequential mechanism, which is most likely an ordered one. In this proposed mechanism, the UDP-sugar is first bound followed by binding of the HA oligosaccharide, after which first the elongated HA oligosaccharide and then UDP is released. Large differences between Km values for UDP-GlcNAc and UDP-GlcUA, also found in Class I HAS enzymes, suggest that UDP-GlcNAc concentration is involved in the regulation of HAS activity and thus the chain length of hyaluronan products.

    Structural studies were used to evaluate the results obtained with kinetic studies. In Chapter 4, a structural homology model of PmHAS was built based on crystal structure K4CP chondroitin polymerase in E. coli, which has a high sequence identity of 62% and high sequence homology of 78% with PmHAS. The active sites of PmHAS are structurally related to other glycosyltransferases and this provided information on where the oligosaccharide binding sites could be located. These putative oligosaccharide binding sites differ in size, as was predicted by kinetic studies (Chapter 4). Furthermore, structural similarities between PmHAS, α1,3-galactosyltransferase (α3GT) and β1,4-galactosyltransferase (β4Gal-T1) demonstrated that PmHAS contains in each transferase domain one flexible loop that forms a bridge over the active site. In crystal structures of α3GT and β4Gal-T1, these flexible loops have been shown to change conformation upon binding the UDP-sugar. Based on similarities in kinetic mechanisms and structures between PmHAS, α3GT and β4Gal-T1, it is likely that the flexible loops in PmHAS follow a similar conformational change, which makes the proposed ordered mechanism the only possible mechanism (Chapter 5).

    In Chapter 6, the knowledge on the PmHAS polymerization mechanism gained in earlier chapters is reviewed and used to create new insights in the polymerization mechanism of Class I HAS enzymes. Both Class I HASs and PmHAS are used in hyaluronan production, and, therefore, the differences and similarities are discussed in Chapter 6. During hyaluronan production, there are many different aspects, such as intrinsic properties of the enzyme, cell metabolism and fermentation reaction conditions, that influence hyaluronan chain length and yield (Chapter 6). Moreover, hyaluronan production systems that are able to produce hyaluronan of desired length are discussed in Chapter 6 and a personal view of how these systems can be improved is presented.
    Polysaccharide Expertise Netwerk (EPNOE)
    Dam, J.E.G. van; Boeriu, C.G. - \ 2010
    polysacchariden - biomassa - interdisciplinair onderzoek - netwerken (activiteit) - innovaties - duurzaamheid (sustainability) - biobased economy - polysaccharides - biomass - interdisciplinary research - networking - innovations - sustainability - biobased economy
    Korte informatie over het Polysaccharide Expertise Netwerk (EPNOE).
    Texture of food gels explained by combining structure and large deformation properties
    Berg, L. van den - \ 2008
    Wageningen University. Promotor(en): Tiny van Boekel; Erik van der Linden, co-promotor(en): F. van de Velde; Ton van Vliet. - S.l. : S.n. - ISBN 9789085049432 - 193
    gels - wei-eiwit - polysacchariden - textuur - structuur - mechanische eigenschappen - reologische eigenschappen - confocale microscopie - gels - whey protein - polysaccharides - texture - structure - mechanical properties - rheological properties - confocal microscopy
    Protein/polysaccharide complexes at air/water interfaces
    Ganzevles, R.A. - \ 2007
    Wageningen University. Promotor(en): Martien Cohen Stuart; Fons Voragen, co-promotor(en): Harmen de Jongh; Ton van Vliet. - [S.l.] : S.n. - ISBN 9789085046141 - 151
    polysacchariden - eiwitten - adsorptie - oppervlaktechemie - oppervlakteverschijnselen - polysaccharides - proteins - adsorption - surface chemistry - surface phenomena
    KEYWORDS:protein, polysaccharide,b‑lactoglobulin, pectin, electrostatic interaction, complex coacervation, adsorption, air/water interface, oil/water interface, surface pressure, surface rheology, spectroscopy

    Proteins are often used to create and stabilise foams and emulsions and therefore their adsorption behaviour to air/water and oil/water interfaces is extensively studied. Interaction of protein and polysaccharides in bulk solution can lead to the formation of soluble or insoluble complexes. The aim of this thesis was to understand the influence of (attractive and non-covalent) protein/polysaccharide interaction on adsorption behaviour at air/water interfaces (and oil/water interfaces) in terms of adsorption kinetics, and rheological and spectroscopic characterisation of the adsorbed layers. The approach was to first identify the relevant parameters (like charge density, charge distribution or molecular weight of the ingredients) in the mixed protein/polysaccharide adsorption process. Subsequently, for each parameter a range of ingredients was selected/prepared allowing variation of only this single parameter. After investigation of the phase behaviour in bulk solution of the different protein/polysaccharide mixtures to be used, the role of each parameter in mixed protein/polysaccharide adsorption was studied. The parameters most thoroughly assessed were: protein/polysaccharide mixing ratio, polysaccharide charge density and molecular weight and the sequence of adsorption. The majority of the measurements were performed withb‑lactoglobulin (in combination with various polysaccharides e.g. pectin or carboxylated pullulan) at air/water interfaces, at standard conditions of pH 4.5 and low ionic strength (< 10 mM). In addition, experiments were performed at higher ionic strengths, different pH's, with different proteins or at an oil/water interface, to extend the insight in mixed protein/polysaccharide adsorption. This results obtained lead to a generic mechanistic model of mixed protein/polysaccharide adsorption.

    In conclusion, protein/polysaccharide interaction can be exploited to control protein adsorption at air/water interfaces. Any parameter affecting protein/polysaccharide interaction (e.g. ingredient parameters like polysaccharide molecular weight, charge density and distribution or system parameters like charge ratio, pH and ionic strength) may be varied to obtain the desired adsorption kinetics, surface rheological behaviour, or net charge of the surface layer. The choice of simultaneous protein/polysaccharide adsorption (in the form of complexes) versus sequential adsorption (first the protein, than the polysaccharide) provides an extra control parameter regarding the functionality of mixed adsorbed layers.
    Structural Characterisation and Enzymatic Degradation of Exopolysaccharides involved in Paper Mill Slime deposition
    Verhoef, R.P. - \ 2005
    Wageningen University. Promotor(en): Fons Voragen, co-promotor(en): Henk Schols. - Wageningen : Wageningen University - ISBN 9789085041412 - 154
    polysacchariden - enzymen - degradatie - pulp- en papierwarenindustrie - bacteriën - bacteriële producten - chemische structuur - biofilms - polysaccharides - enzymes - degradation - pulp and paper industry - bacteria - bacterial products - chemical structure - biofilms
    Bacteria that adhere to the surface of a paper machine form a biofilm that entraps the fibres and additives used as raw material to form a slime deposit. The formation of these slime deposits can result in serious problems with respect to the papermaking process itself and the end product. Traditionally more or less toxic biocides are used to prevent this problem. However, due to more strict environmental legislation there is growing interest in alternative methods for slime control. One of these methods could be the use of enzymes that degrade the exopolysaccharides (EPSs) that form the major structural element of a biofilm. To obtain these enzymes it is important to know which EPSs to target for enzymatic degradation. Therefore the EPSs produced by several species isolated from different paper mills within Spain, Finland or France were subjected to a (detailed) chemical structure elucidation. From these studies several EPSs were selected as target substrates for enzymatic degradation. The enzyme able to degrade one of these substrates was subjected to purification and characterisation studies.
    Long-term performance and behavior of sows fed high levels of non-starch polysaccharides
    Peet-Schwering, C.M.C. van der - \ 2004
    Wageningen University. Promotor(en): Martin Verstegen; Bas Kemp, co-promotor(en): Leonard den Hartog. - [S.I.] : S.n. - ISBN 9789085040682 - 141
    zeugen - varkens - zwangerschap - lactatie - polysacchariden - voer - samenstelling - voortplantingsvermogen - abnormaal gedrag - diergedrag - zeugenvoeding - diervoeding - dierenwelzijn - sows - pigs - pregnancy - lactation - polysaccharides - feeds - composition - reproductive performance - abnormal behaviour - animal behaviour - sow feeding - animal nutrition - animal welfare

    The main objective of this thesis was to investigate the long-term effects of feeding sows high levels of dietary fermentable non-starch polysaccharides CNSP) (i.e., NSP from sugar beet pulp) restrictedly or ad libitum during gestation or ad libitum during lactation on behavior, reproductive performance, and development in body weight and backfat thickness. During gestation, sows were group-housed. Feeding gestating sows a high level of dietary fermentable NSP restrictedly reduced the frequency of total non-feeding oral activities in gestation compared with a starch diet. Feeding sows a high level of dietary fermentable NSP during lactation reduced the frequency of total non-feeding oral activities during subsequent gestation compared with a starch diet. Body weight and backfat gains during gestation were lower in sows fed a high level of dietary fermentable NSP restrictedly during gestation over three successive parities than in sows fed a starch diet restrictedly. These results indicate an overestimation of the energy value of fermentable NSP. Body weight and backfat losses during lactation were less in sows fed a high level of dietary fermentable NSP during gestation than in sows fed a starch diet. Sows fed a high level of dietary fermentable NSP during lactation lost more backfat during lactation than sows fed a starch diet. The number of live born piglets was 0.5 piglet higher in sows fed a high level of dietary fermentable NSP from weaning until mating and during subsequent gestation than in sows fed a starch diet. It may be that this effect can be attributed to feeding sows a high level of dietary fermentable NSP from weaning until mating. Lactation diet did not affect the number of live born piglets in the following parity. Gestating sows that were fed a high level of dietary fermentable NSP ad libitum during three successive parities ate 1.3 kg/d more during gestation than sows that were fed a starch diet restrictedly (4.2 versus 2.9 kg/d), resulting in higher body weight and backfat gains during gestation and greater losses in body weight and backfat during lactation. Feed intake during lactation was similar in sows that were fed restrictedly or ad libitum during gestation. Reproductive performance was not affected by feeding gestating sows a high level of dietary fermentable NSP ad libitum. Ad libitum fed sows spent 90 min/d eating whereas restrictedly fed sows spent 24 min/d eating. An increase in time spent eating is associated with a reduction in feeding motivation and in stereotypic behaviors. In conclusion, feeding gestating sows a high level of dietary fermentable NSP reduces the level of stereotypic behavior in gestation compared to a starch diet. Feeding sows a diet with a high level of fermentable NSP during lactation has an additional reducing effect on the development of stereotypic behavior in subsequent gestation. Reproductive performance is not negatively affected by feeding gestating sows a diet with a high level of fermentable NSP (i.e. NSP from sugar beet puIp) restrictediy or ad libitum during three successive parities compared to feeding gestating sows a starch diet restrictedly.

    Microstructure, rheology and demixing in emulsions flocculated by polysaccharides
    Blijdenstein, T.B.J. - \ 2004
    Wageningen University. Promotor(en): Erik van der Linden, co-promotor(en): G.A. van Aken; Ton van Vliet. - Wageningen : S.n. - ISBN 9789058089588 - 121
    emulsies - uitvlokking - polysacchariden - reologie - structuur - emulsions - flocculation - polysaccharides - rheology - structure
    keywords: Emulsion, b-lactoglobulin, polysaccharides, salt, sucrose, depletion, bridging, percolation, microstructure, micro-rheology, rheology, demixing, creaming, network compression. Abstract In this thesis, a study is presented on gravity-induced demixing behaviour of oil-in-water emulsions, stabilised by b-lactoglobulin and flocculated by various polysaccharides. Flocculation by polysaccharides mainly results in formation of emulsion droplet networks and can proceed via depletion and via bridging. Structural and rheological properties of these different networks were investigated and compared on a micro-and macroscopic level. These properties were related to the demixing behaviour of the emulsions. For emulsion droplet networks, gravity-induced compression of the network leads to separation of a serum layer. For depletion-induced networks, the initial rate of demixing by network compression is usually low and at high polysaccharide concentrations, usually a delay-time is observed before substantial demixing occurs. This delay-time scales with the permeability of the network, the viscosity and the density difference between oil and water. Once demixing has started, the network quickly collapses until the emulsion droplets are packed rather closely together. In bridging-flocculated emulsions, the initial demixing rate is higher, but more water was retained at longer times. The effects of protein, sugar and salts on demixing of depletion-flocculated networks were investigated as well. Protein affected the rate of flocculation and counteracted network formation. Sucrose affected the demixing rate via the viscosity and density of the aqueous phase, but it did not affect the droplet-droplet interactions. Salt affected the electrostatic droplet-droplet interactions. As a result, depletion-flocculation by dextran was inhibited at low salt concentrations. Addition of Ca2+ ions led to a decrease in repulsion between the protein layers, resulting in stronger droplet-droplet bonds, reinforcing a droplet network and retarding network compression.
    Mushroom and herb polysachariides as alternative for antimicrobial growth promotors in poultry
    Guo, F. - \ 2003
    Wageningen University. Promotor(en): Martin Verstegen; Rene Kwakkel; B.A. Williams; Z.Q. Yang. - [S.l.] : S.n. - ISBN 9789058088260
    pluimvee - paddestoelen - medicinale planten - polysacchariden - anti-infectieuze middelen - voedertoevoegingen - groeibevorderaars - immuniteitsreactie - ziekteresistentie - pluimveevoeding - diervoeding - diergezondheid - poultry - mushrooms - medicinal plants - polysaccharides - antiinfective agents - feed additives - growth promoters - immune response - disease resistance - poultry feeding - animal nutrition - animal health

    Keywords : mushroom and herb polysaccharides, antimicrobial growth promoters, chickens

    Antibiotics are widely used as therapeutics agents and also as growth promoters in poultry production. The possibility of developing resistant populations of bacteria and the side effects of using antibiotics as growth promoters in the farm animals has led to the recent EU-ban on the use of several antibiotics as growth promoters in poultry diets. Therefore, there is an intensive search for alternatives such as probiotics, prebiotics and other feed additives. Immuno-active polysaccharides derived from two mushrooms, Tremella fuciformis ( TreS ) and Lentinus edodes ( LenS ), and the herb Astragalus membranacea Radix ( AstS ), seem to be potential alternatives for antimicrobial growth and health promoters. These products were considered to play an important role in strengthening the animals' defense system by improving the physical conditions of gut ecosystem and enhancing functions of the immune system of chickens. The results presented in this dissertation demonstrated that intact mushroom and herb materials and their polysaccharide extracts showed differences in their physico-chemical properties, therefore, these products showed differences in fermentability and led to significant shifts in the bacterial community when fermented in vitro . These medicinal mushroom and herb materials, particularly their polysaccharide extracts, show promise in altering microbial activities and composition in chicken ceca. The polysaccharide extracts showed a slightly significant effect on growth performance and had no effects on weights of immune and GIT organs in normal broilers. However, the polysaccharide extracts significantly enhanced body growth and manipulated cecal microbial ecosystem such as viscosity and microbial species in Avian mycoplasma Gallisepticum infected chickens. And potential beneficial bacteria were significantly increased by the polysaccharide extracts. The polysaccharide extracts showed significant effects on body growth, immune responses as well as growth of immune organs and development of GIT fragments in coccidian-infected chickens, and particularly when they were used in conjunction with vaccine. The use of the mushroom and herb polysaccharide extracts might enhance T-cell immune responses, characterized by IFN- and IL-2 secretion, against coccidiosis in chickens. Supplementation of mushroom and herb extracts resulted in enhancement of resistance toE. tenella probably by enhancing both cellular and humoral immune responses against E.tenella in chickens.

    Pectic Polysaccharides
    Schols, H.A. ; Voragen, A.G.J. - \ 2003
    In: Handbook of food enzymology / Whitaker, J.R., Voragen, A.G.J., Wong, D.W.S., New York : Dekker - ISBN 9780824706869 - p. 829 - 843.
    enzymen - polysacchariden - pectinen - celwanden - enzymes - polysaccharides - pectins - cell walls
    Pectins or pectic substances are names of a group of closely associated polysaccharides present in plant cell walls. Due to their anionic nature, pectic polysaccharides are considered to be involved in the regulation of ion transport and may control the permeability of the walls for enzymes. Also they determine the water-holding capacity of the wall
    Ruwecelstofrijke voeders voor zeugen: effect op reproductie en gedrag
    Peet-Schwering, C.M.C. van der - \ 2002
    Lelystad : Praktijkonderzoek Veehouderij (Praktijkrapport. Varkens 10) - 24
    zeugen - varkensvoeding - voer - ruwvoer (roughage) - polysacchariden - zetmeel - zwangerschap - lactatie - diergedrag - abnormaal gedrag - dierenwelzijn - voortplantingsvermogen - sows - pig feeding - feeds - roughage - polysaccharides - starch - pregnancy - lactation - animal behaviour - abnormal behaviour - animal welfare - reproductive performance
    Op het Praktijkcentrum Rosmalen is onderzoek gedaan naar het effect van het verstrekken van voeders met een hoog zetmeelgehalte of een hoog gehalte aan verteerbare overige organische stof (= VOOS) tijdens de dracht, lactatie of dracht en lactatie op de ontwikkeling van gewicht en spekdikte en reproductieresultaten bij zeugen.
    Structural characteristics of polysaccharides from olive fruit cell walls in relation to ripening and processing
    Vierhuis, E. - \ 2002
    Wageningen University. Promotor(en): A.G.J. Voragen; H.A. Schols. - S.l. : S.n. - ISBN 9789058085948 - 135
    voedselchemie - olijven - celwandstoffen - polysacchariden - rijp worden - voedselverwerking - food chemistry - olives - cell wall components - polysaccharides - ripening - food processing

    Key words: Olive fruit; olive oil; pectic polysaccharides; xyloglucans; xylans;

    enzyme preparations; phenolic compounds; processing; ripening

    Technical enzyme preparations can be used as processing aids in the olive oil industry to obtain a higher yield and a better quality of the oil. These technical enzyme preparations degrade the plant cell wall, thus enhancing the permeability for oil. However, still very little is known about the specific role of the various constituent enzymes present in the preparations towards the polysaccharides in the plant cell wall. This study deals with this subject and describes the structural characteristics of the polysaccharides in the cell wall of olive fruit in relation to processing for oil extraction.

    The major polysaccharides in the cell wall of olive fruit were found to be the pectic polysaccharides and the hemicellulosic polysaccharides xyloglucan and xylan. The pectic polysaccharides were highly methyl esterified and rich in arabinose. The xyloglucans had a backbone with three out of four glucose residues substituted with xylose residues and had a very specific substitution pattern, because galactose as well as arabinose residues could be linked to the xylose residues. The presence of arabinose residues linked to xylose residues is a common feature of xyloglucans produced by solanaceous plants, but has not been demonstrated for other dicotylodonous plants. Incubation of the cell wall material from olive fruit with pectin degrading enzymes in combination with endo-glucanases revealed that O -acetyl groups were not only linked to pectic material in olive fruit but also to xyloglucan. It was established that the arabinose residues of the xyloglucan could carry one or two O -acetyl groups. The cell wall material of olive fruit contained besides xyloglucan also considerable amounts of the hemicellulose xylan. These xylans appeared to be very low in substitution. Less than 10% of the xylose residues were mono substituted, mainly with 4- O -methyl-glucuronic acid residues.

    The use of technical enzyme preparations during processing affected only a relatively small part of the polysaccharides in the cell wall. About 8-10% of the cell wall polysaccharides were extracted with cold and hot buffer and appeared to be modified during enzymatic processing. The changes of the buffer soluble pectic material were reflected by an increase in yield, a change in molecular weight distribution, a decrease in methyl esterification and a degradation of the (1®4)-linked galactan chains. No differences were observed in the composition of the arabinan chains during enzymatic processing. Analysis of the olive oil revealed that the use of enzyme preparations increased the concentration of phenolic compounds in the oil. Especially, the contents of secoiridoid derivatives such as the dialdehydic form of elenolic acid linked to 3,4-dihydroxyphenylethanol and an isomer of oleuropein aglycon increased significantly. These two phenolic compounds have high antioxidant activities.

    The effect of enzyme treatment during the mechanical extraction of olive oil depends on the stage of maturity of the olive fruit. From this perspective the structural characteristics of the cell wall polysaccharides during ripening have also been investigated. During ripening the degree of methyl esterification and acetylation decreased and the solubility of the pectic polymers in buffer markedly increased. No distinct differences could be noticed with regard to the sugar composition and the profile of the molecular weight distribution of the pectic and hemicellulosic polymers during fruit development.

    Metabolic engineering of exopolysaccharide production in Lactococcus lactis
    Boels, I.C. - \ 2002
    Wageningen University. Promotor(en): W.M. de Vos; M. Kleerebezem. - S.l. : S.n. - ISBN 9789058086938 - 144
    polysacchariden - melkzuurbacteriën - lactococcus lactis - productie - biosynthese - metabolisme - polysaccharides - lactic acid bacteria - lactococcus lactis - production - biosynthesis - metabolism

    Exopolysaccharides (EPS) produced by lactic acid bacteria are important structural components in fermented foods. In addition, they may confer health benefits to the consumer, as mouse model studies have indicated that EPS may have immunostimulatory, anti-tumoral, or cholesterol-lowering activity. Lactococcus lactis strain NIZO B40 produces a phosphorylated EPS with a branched repeating unit containing glucose, galactose and rhamnose. The biosynthesis of this polymer depends on both the specific eps genes organized in a plasmid-located gene cluster and on several household genes that are involved in biosynthesis of the primary EPS precursors, the nucleotide-sugars. This work focused on the household genes to induce overproduction and/or structural modification of EPS. Therefore, we cloned, characterized, and controlled expression of the genes that encode enzymes involved (i) in primary sugar metabolism ( glk , pfk , fbp , pgm ), (ii) the biosynthetic pathway from glucose-1P to the EPS precursors UDP-glucose ( galU ), UDP-galactose ( galU and galE ) and dTDP-rhamnose ( rfbACBD) , and (iii) in the specific pathway ( epsA-K ) for the assembly of the repeating unit, export and polymerization of the NIZO B40 EPS. We provide evidence for metabolic control of the gal and rfb genes in EPS precursor and EPS production. Overexpression of the galU , pgm or the rfb genes resulted in a significant increase of EPS-precursors. Moreover, overexpression of the eps genes led to four-fold increased NIZO B40 EPS production. In addition, reduction of the UDP-galactose level by galE disruption abolished EPS production while a rfb conditional knock out yielded an EPS with altered sugar composition and different physical characteristics.

    The research described in this thesis contributes to the understanding of exopolysaccharide biosynthesis in lactic acid bacteria and provides a starting point for applications in the dairy industry, especially with respect to the texture and health benefits of fermented products.

    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.