Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Effect of microparticulated whey protein on sensory properties of liquid and semi-solid model foods
    Liu, K. ; Stieger, M.A. ; Linden, E. van der; Velde, Fred van de - \ 2016
    Food Hydrocolloids 60 (2016). - ISSN 0268-005X - p. 186 - 198.
    MWP - lubrication - Particle size - creaminess - roughness - sensory
    This work describes the sensory properties of microparticulated whey protein (MWP) particles in relation to their rheological and tribological properties. The aim of this work is to obtain a better understanding of the sensory perception of MWP particles compared to oil droplets in liquid and semi-solid matrices. We used liquid MWP-o/w emulsions with controlled viscosities and semi-solid MWP-emulsion-filled gelatin gels as food model systems. Consistent with our previous findings, MWP showed good lubrication properties probably due to ball bearing mechanism in both liquid and semi-solid systems. Sensory results (QDA) revealed that small MWP particles contributed to perception of creaminess due to their lubrication property. Large MWP contributed to the rough and powdery perception, and thus suppressed perception of creaminess. MWP did not contribute to perception of fattiness in contrast to oil droplets. The perception of fattiness was probably related to the film formation properties of oil. As a result, MWP in liquid emulsions were generally perceived as rough but not creamy. In the case of MWP-emulsion-filled gels, although the gel matrix restrained the lubrication function of MWP particles, it also masked the rough perception of big MWP particles. Due to the combined effect of both oil droplets and MWP particles, MWP in gels resulted in an overall positive effect on the creamy perception. We conclude that MWP contributes to fat-related sensations in a different way than oil does. The perception of MWP particles is related to the size of the particle as well as the properties of the surrounding matrix.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.