Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Effects of pesticides on soil invertebrates in model ecosystem and field studies: a review and comparison with laboratory toxicity data
    Jänsch, S. ; Frampton, G.K. ; Römbke, J. ; Brink, P.J. van den; Scott-Fordsmand, J.J. - \ 2006
    Environmental Toxicology and Chemistry 25 (2006)9. - ISSN 0730-7268 - p. 2490 - 2501.
    species sensitivity distributions - earthworms - chemicals - tests - collembola - lumbricidae - oligochaeta - sublethal
    A systematic review was carried out to investigate the extent to which higher-tier (terrestrial model ecosystem [TME] and field) data regarding pesticide effects can be compared with laboratory toxicity data for soil invertebrates. Data in the public domain yielded 970 toxicity endpoint data sets, representing 71 pesticides and 42 soil invertebrate species or groups. For most pesticides, the most frequent effect class was for no observed effects, although relatively high numbers of pronounced and persistent effects occurred when Lumbricidae and Enchytraeidae were exposed to fungicides and when Lumbricidae, Collembola, and Arachnida were exposed to insecticides. No effects of fungicides on Arachnida, Formicidae, or Nematoda or of herbicides on Lumbricidae, Formicidae, or Nematoda were observed in any studies. For most pesticides, higher-tier no-observed-effect concentration or lowest-observed-effect concentration values cannot be determined because of a lack of information at low pesticide concentrations. Ten pesticides had sufficient laboratory data to enable the observed higher-tier effects to be compared with 5% hazardous concentrations (HC5) estimated from acute toxicity laboratory data (atrazine, carbendazim, chlorpyrifos, diazinon, dimethoate, ¿-hexachlorocyclohexane, lambda-cyhalothrin, parathion, pentachlorophenol, and propoxur). In eight cases, higher-tier effects concentrations were within or below the 90% confidence interval of the HC5. Good agreement exists between the results of TME and field tests for carbendazim, but insufficient information is available for a comparison between TME and field studies for other pesticides. Availability and characteristics (e.g., taxonomic composition and heterogeneity) of the higher-tier effects data are discussed in terms of possible developments in risk assessment procedures.
    The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality
    Eijsackers, H.J.P. ; Beneke, P. ; Maboeta, M. ; Louw, J.P.E. ; Reinecke, A.J. - \ 2005
    Ecotoxicology and Environmental Safety 62 (2005)1. - ISSN 0147-6513 - p. 99 - 111.
    oligochaeta - oxychloride - biomarker - reproduction - sublethal - growth
    To investigate the impact of copper-containing fungicides (copper oxychloride) on earthworms in South African vineyards, field inventories of earthworms in and between vine rows were carried out and compared to directly adjacent grassland. Also copper content, pH, organic matter content, and soil porosity were determined in these soils. This was combined with laboratory experiments to study the impact of vineyard soil characteristics on the burrowing and dispersal behavior of earthworms. Moreover, the direct toxic action of copper oxychloride on different endpoints of the earthworms (survival and growth) was studied. Copper oxychloride had a negative impact on these endpoints (decreased growth and survival related to increased copper body content) as well as on the behavioral aspect (decreased burrowing rate and avoidance of copper-containing soil). Moreover, there was an inverse relation between burrowing activity and soil bulk density that could also be related to the copper content. This may lead to a decrease in sustainable soil quality in vineyards
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.