Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Current refinement(s):

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review
    Cornelis, G. ; Hund-Rinke, K. ; Kuhlbusch, T. ; Brink, N.W. van den; Nickel, C. - \ 2014
    Critical Reviews in Environmental Science and Technology 44 (2014)24. - ISSN 1064-3389 - p. 2720 - 2764.
    saturated porous-media - fullerene c-60 nanoparticles - zinc-oxide nanoparticles - titanium-dioxide nanoparticles - surface-charge heterogeneity - coated silver nanoparticles - modified fe-0 nanoparticles - water treatment-plant - humic-acid - carbon nanotubes
    Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids in soils, and an analysis of the diverse ENM characteristics determining availability from the soil organisms’ perspective to assess the main soil characteristics that determine the fate, speciation, and ultimately bioavailability of ENM in natural soils. Predominantly salinity, texture, pH, concentration, and nature of mobile organic compounds and degree of saturation determine ENM bioavailability.
    Nitrous Oxide (N2O) emissions from human waste in 1970-2050
    Strokal, M. ; Kroeze, C. - \ 2014
    Current Opinion in Environmental Sustainability 9-10 (2014). - ISSN 1877-3435 - p. 108 - 121.
    water treatment-plant - coastal waters - climate-change - future-trends - sewage-sludge - anthropogenic nitrogen - reactive nitrogen - nutrient export - surface-water - united-states
    Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment and from sewage discharges) and uncollected waste. We review existing literature on emissions and emission factors, and present region-specific estimates of N2O emissions and their past and future trends. We show that human waste may became an important source of N2O emissions in the coming years as a result of increasing urbanization. About two-thirds of the global emissions are from uncollected waste, and about half from South Asia. We argue that more research is needed to improve emission factors.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.