Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 5 / 5

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Association of latex pressures with tipburn injury of lettuce
    Tibbitz, T.W. ; Bensink, J. ; Kuiper, F. ; Hobe, J.H. - \ 1985
    Journal of the American Society for Horticultural Science 110 (1985). - ISSN 0003-1062 - p. 362 - 365.
    Phytochrome in Pharbitisnil during and after de-etiolation
    Rombach, J. ; Bensink, J. ; Katsura, N. - \ 1982
    Physiologia Plantarum 56 (1982). - ISSN 0031-9317 - p. 251 - 258.
    A formal template for the development of cucumber in its vegetative stage (I, II and III)
    Horie, T. ; Wit, C.T. de; Goudriaan, J. ; Bensink, J. - \ 1979
    Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Serie C: Biological and medical sciences 82 (1979)4. - ISSN 0023-3374 - p. 433 - 479.
    On morphogenesis of lettuce leaves in relation to light and temperature
    Bensink, J. - \ 1971
    Landbouwhogeschool Wageningen. Promotor(en): E.C. Wassink. - Wageningen : Veenman - 93
    lactuca sativa - slasoorten - lactuca sativa - lettuces

    The growth of leaves of some butterhead type varieties of lettuce has been investigated under different light intensities and temperatures, with special reference to the process of head formation. Most experiments were carried out with the varieties 'Meikoningin' and 'Rapide' in climatized growth rooms.

    In Chapter 1, a typical feature of lettuce leaves is demonstrated, viz ., that lamina extension may largely exceed that of the corresponding midrib, yielding the caracteristic folds and crinkles of the leaf blade (Plate II). Therefore, length and greatest width of the leaves have mainly been chosen as criteria for differences in leaf growth.

    In Chapter 3, the effects of different light intensities, light duration (daylength) and their interaction with temperature are presented. Leaf production increases both with light intensity and with temperature (fig. 3.1), but appears to remain fairly constant with plant age. Since subsequent leaf development occurs at a lower rate, a number of leaf primordia and young leaves of the plant accumulate with time (figs. 3.4 and 3.5). Results suggest that primordial growth is more affected by temperature than by light intensity (fig. 3.6).

    In many respects clear-cut differences are found between the response of leaf length and leaf width under various experimental conditions. Based on the maximum leaf dimensions reached, leaf width generally responds positively to increasing light energy, either given as a higher light intensity or a greater daylength (figs. 3.7 and 3.9.) In both cases relationships are represented by saturation curves which, for light intensity, tend to go through the origin. Effects of daylength become particularly evident for periods shorter than 12 hours.

    For leaf length, a positive relation to light energy is only found at a low intensity level, since at high light intensity midrib elongation appears clearly suppressed. Effects of different daylengths, also are only evident at a low light intensity (fig. 3.9).

    Temperature effects greatly depend on the prevailing light intensity: a negative response observed at low light intensity changes into a positive one at high light intensity, in particular for leaf width (fig. 3.11). This implies that the effect of temperature on leaf width is small at intermediate light intensities (fig. 3.12). It further appeared that light intensity effects on leaf width are especially manifest at high temperature, whereas for leaf length they are more pronounced at low temperature (fig. 3.11).

    Growth-time relationships appear to be quite different for leaf length and leaf width. Leaves elongate fast at low light intensity, but growth is maintained for a longer period at high light intensity. As a consequence hereof light intensity effects on the final length of the leaves remain restricted. In contrast to this, the effects on leaf width are much more pronounced, since both growth rate and growth duration are greatly reduced at low light intensity (fig. 3.16).

    From the linear, but greatly different length-width relationships, measured during leaf expansion at different light intensities (fig. 3.21), it may be concluded that an important factor in determining the ultimate shape of the leaves is the moment at which leaf blade expansion is initiated during primordial leaf development.

    In Chapter 4, the foregoing results are examined on the base of differences in number and size of epidermal cells in the midrib and the leaf blade. Both for the midrib and the leaf blade there is a positive relation between light intensity and cell number. Differences in cell number largely determine differences in leaf width, whereas in the midrib differences in cell length are much more important (figs. 4.3 and 4.7). In general, average cell length in the midrib decreases with increasing light intensity. This may explain the reduction of the midrib observed at high light intensities. Cell division appears restricted mainly to the early stage of growth.

    In chapter 5, results of some additional experiments are presented, concerning defoliation, extra CO 2 , and gibberellin application. Defoliation causes a temporary reduction of leaf width of subsequent leaves (fig. 5.1) which can also be brought about by a temporary reduction in light intensity (fig. 5.3). At a higher CO 2 concentration larger leaves are produced than in normal air. In all these cases, differences in leaf width are closely related to changes in cell number. Gibberellin, in particular, induces a strong elongation of the midrib which eventually may go at the expense of leaf blade development.

    It has been suggested that differences in leaf growth may be understood on the base of a balance between energetic and non-energetic processes. Both may operate as a limitation for further growth. Energetic processes (i.e. photosynthesis) seem to control to a large extent cell division, consequently expansion of the leaf blade, whereas non-energetic processes (e.g. hormon activity) seem important in particular for cell extension, and therefore play a major rôle in midrib elongation. In this respect it is tempting to assume that at high intensity a relatively higher hormonal activity is required to keep the cells in optimal condition for extension.

    The formative effect of light intensity in lettuce plants grown at different nitrate concentrations
    Bensink, J. - \ 1960
    Wageningen : Veenman (Mededelingen van de Landbouwhogeschool Wageningen 60-19) - 12
    lactuca - slasoorten - lichtsterkte - nitraten - groenteteelt - lactuca - lettuces - light intensity - nitrates - vegetable growing
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.