Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    An acidic model pro-peptide affects the secondary structure, membrane interactions and antimicrobial activity of a crotalicidin fragment
    Júnior, Nelson G.O. ; Cardoso, Marlon H. ; Cândido, Elizabete S. ; Broek, Danielle van den; Lange, Niek de; Velikova, Nadya ; Kleijn, J.M. ; Wells, Jerry M. ; Rezende, Taia M.B. ; Franco, Octávio Luiz ; Vries, Renko de - \ 2018
    Scientific Reports 8 (2018)1. - ISSN 2045-2322

    In order to study how acidic pro-peptides inhibit the antimicrobial activity of antimicrobial peptides, we introduce a simple model system, consisting of a 19 amino-acid long antimicrobial peptide, and an N-terminally attached, 10 amino-acid long acidic model pro-peptide. The antimicrobial peptide is a fragment of the crotalicidin peptide, a member of the cathelidin family, from rattlesnake venom. The model pro-peptide is a deca (glutamic acid). Attachment of the model pro-peptide only leads to a moderately large reduction in the binding to- and induced leakage of model liposomes, while the antimicrobial activity of the crotalicidin fragment is completely inhibited by attaching the model pro-peptide. Attaching the pro-peptide induces a conformational change to a more helical conformation, while there are no signs of intra- or intermolecular peptide complexation. We conclude that inhibition of antimicrobial activity by the model pro-peptide might be related to a conformational change induced by the pro-peptide domain, and that additional effects beyond induced changes in membrane activity must also be involved.

    Specific in vitro toxicity of crude and refined petroleum products: 3. Estrogenic responses in mammalian assays
    Vrabie, C.M. ; Candido, A. ; Berg, J.H.J. van den; Murk, A.J. ; Duursen, M. van; Jonker, M.T.O. - \ 2011
    Environmental Toxicology and Chemistry 30 (2011)4. - ISSN 0730-7268 - p. 973 - 980.
    cancer cell-line - receptor-mediated responses - mcf-7 cells - heavy oil - er-alpha - beta - proliferation - binding - model - chemicals
    Current petroleum risk assessment considers only narcosis as the mode of action, but several studies have demonstrated that oils contain compounds with dioxin-like, estrogenic or antiestrogenic, and androgenic or antiandrogenic activities. The present study is the third in a series investigating the specific toxic effects of 11 crude oils and refined products. By employing recombinant mammalian cells stably transfected with the human estrogen receptor alpha (ERa) or beta (ERß), and expressing the luciferase protein (ERa-U2OS-Luc and ERß-U2OS-Luc assay), the estrogenicity or antiestrogenicity of oils was studied. All oils, except for two refined oils and one crude oil, induced estrogenic responses. The calculated estrogenic potencies of the oils were six to nine orders of magnitude lower than the potency of 17ß-estradiol (E2). Upon coexposure to a fixed concentration of E2 and increasing concentrations of oils, additive, antagonistic, and synergistic effects were revealed. One nautical fuel oil was tested in the human breast carcinoma cell line MCF-7, in which it induced cell proliferation up to 70% relative to the maximal induction by E2. At its minimum effect concentration of 25¿mg/L, the oil was also capable of inducing mRNA expression of the estrogen-dependent protein pS2 by a factor of two. The present results indicate that oils naturally contain potentially endocrine-disrupting compounds that are able to influence the estrogenicity of other compounds and may cause biological responses beyond receptor binding.
    Check title to add to marked list

    Show 20 50 100 records per page

    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.