Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 20 / 44

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Les « Kinkenwegen » et « kinkenvoerders » du duché de Limbourg et des pays d’Outre-Meuse. Le transport des céréales et du charbon à l’aide de chevaux de bât dans la région transfrontalière d’Aix-la-Chapelle, Liège et Maastricht, aux XVIIIe et XIXe siècles
    Paulissen, M.P.C.P. - \ 2019
    In: Le Duché de Limbourg et les pays d’Outre-Meuse. Actes du colloque international tenu à Liège et à Maastricht les 23 et 24 mai 2016 / Dumont, B., Archives générales du Royaume, Bruxelles (Miscellanea Archivistica 217) - ISBN 9789463910156 - p. 145 - 176.
    Sous l'Ancien Régime, la province de Limbourg constitue une des dix-sept provinces des Pays-Bas espagnols, puis autrichiens. C'est en réalité un ensemble de caractère fédéral qui rassemble quatre composantes bien distinctes: le duché de Limbourg, le pays de Dalhem, le pays de Valkenburg (Fauquemont) et le pays de 's-Hertogenrade (Rolduc). Ces territoires étaient apparus au moyen âge sous forme de principautés territoriales autonomes et leur rassemblement, aux XIIIe-XIVe siècles, sous un même sceptre (d'abord ducs de Brabant, puis ducs de Bourgogne, Habsbourg d'Espagne ensuite, d'Autriche enfin) entraîna leur rapprochement, mais non leur fusion (du moins jusqu'en 1778), en une seule entité politique et administrative. Autres caractéristiques importantes de ces pays: leur position frontalière aux confins des Pays-Bas méridionaux et au-delà de la Meuse, d'où l'expression pays d'Outre-Meuse, en même temps que leur situation d'enclave des Pays-Bas au sein d"États étrangers (la principauté épiscopale de Liège, les Provinces-Unies, l'Empire, la principauté abbatiale de Stavelot-Malmedy, etc.). Par ailleurs, ces pays s'inscrivent dans la région naturelle d'Entre-Meuse-et-Rhin, caractérisée ici par la présence, à leurs bordures, de villes importantes comme Maastricht, Aix-la-Chapelle, Verviers et Liège. Un particularisme bien marqué, au plan tant politique et socio-économique que culturel, s'en dégagera.
    Understanding the role of livestock farming systems in agroecological transitions
    Ripoll Bosch, R. ; Dumont, B. - \ 2019
    In: Book of Abstracts of the 70th Annual Meeting of the European Federation of Animal Science. - Wageningen Academic Publishers (EAAP books of abstracts ) - ISBN 9789086863396 - p. 653 - 653.
    Global wheat production with 1.5 and 2.0°C above pre‐industrial warming
    Liu, B. ; Martre, P. ; Ewert, F. ; Porter, J.R. ; Challinor, A.J. ; Muller, G. ; Ruane, A.C. ; Waha, K. ; Thorburn, Peter J. ; Aggarwal, P.K. ; Ahmed, M. ; Balkovic, Juraj ; Basso, B. ; Biernath, C. ; Bindi, M. ; Cammarano, D. ; Sanctis, Giacomo De; Dumont, B. ; Espadafor, M. ; Eyshi Rezaei, Ehsan ; Ferrise, Roberto ; Garcia-Vila, M. ; Gayler, S. ; Gao, Y. ; Horan, H. ; Hoogenboom, G. ; Izaurralde, Roberto C. ; Jones, C.D. ; Kassie, Belay T. ; Kersebaum, K.C. ; Klein, C. ; Koehler, A.K. ; Maiorano, Andrea ; Minoli, Sara ; Montesino San Martin, M. ; Kumar, S.N. ; Nendel, C. ; O'Leary, G.J. ; Palosuo, T. ; Priesack, E. ; Ripoche, D. ; Rötter, R.P. ; Semenov, M.A. ; Stockle, Claudio ; Streck, T. ; Supit, I. ; Tao, F. ; Velde, M. van der; Wallach, D. ; Wang, E. ; Webber, H. ; Wolf, J. ; Xiao, L. ; Zhang, Z. ; Zhao, Z. ; Zhu, Y. ; Asseng, S. - \ 2019
    Global Change Biology 25 (2019)4. - ISSN 1354-1013 - p. 1428 - 1444.
    Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5°C and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5 °C scenario and -2.4% to 10.5% under the 2.0 °C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer -India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production are therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
    Climate change impact and adaptation for wheat protein
    Asseng, Senthold ; Martre, Pierre ; Maiorano, Andrea ; Rötter, Reimund P. ; O’Leary, Garry J. ; Fitzgerald, Glenn J. ; Girousse, Christine ; Motzo, Rosella ; Giunta, Francesco ; Babar, M.A. ; Reynolds, Matthew P. ; Kheir, Ahmed M.S. ; Thorburn, Peter J. ; Waha, Katharina ; Ruane, Alex C. ; Aggarwal, Pramod K. ; Ahmed, Mukhtar ; Balkovič, Juraj ; Basso, Bruno ; Biernath, Christian ; Bindi, Marco ; Cammarano, Davide ; Challinor, Andrew J. ; Sanctis, Giacomo De; Dumont, Benjamin ; Eyshi Rezaei, Ehsan ; Fereres, Elias ; Ferrise, Roberto ; Garcia-Vila, Margarita ; Gayler, Sebastian ; Gao, Yujing ; Horan, Heidi ; Hoogenboom, Gerrit ; Izaurralde, R.C. ; Jabloun, Mohamed ; Jones, Curtis D. ; Kassie, Belay T. ; Kersebaum, Kurt Christian ; Klein, Christian ; Koehler, Ann Kristin ; Liu, Bing ; Minoli, Sara ; Montesino San Martin, Manuel ; Müller, Christoph ; Naresh Kumar, Soora ; Supit, Iwan ; Tao, Fulu ; Wolf, Joost ; Zhang, Zhao ; Ewert, Frank - \ 2019
    Global Change Biology 25 (2019)1. - ISSN 1354-1013 - p. 155 - 173.
    climate change adaptation - climate change impact - food security - grain protein - wheat

    Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.

    Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations
    Rodríguez, A. ; Ruiz-Ramos, M. ; Palosuo, T. ; Carter, T.R. ; Fronzek, S. ; Lorite, I.J. ; Ferrise, R. ; Pirttioja, N. ; Bindi, M. ; Baranowski, P. ; Buis, S. ; Cammarano, D. ; Chen, Y. ; Dumont, B. ; Ewert, F. ; Gaiser, T. ; Hlavinka, P. ; Hoffmann, H. ; Höhn, J.G. ; Jurecka, F. ; Kersebaum, K.C. ; Krzyszczak, J. ; Lana, M. ; Mechiche-Alami, A. ; Minet, J. ; Montesino, M. ; Nendel, C. ; Porter, J.R. ; Ruget, F. ; Semenov, M.A. ; Steinmetz, Z. ; Stratonovitch, P. ; Supit, I. ; Tao, F. ; Trnka, M. ; Wit, A. de; Rötter, R.P. - \ 2019
    Agricultural and Forest Meteorology 264 (2019). - ISSN 0168-1923 - p. 351 - 362.
    Climate change - Decision support - Outcome confidence - Response surface - Uncertainty - Wheat adaptation

    Climate change is expected to severely affect cropping systems and food production in many parts of the world unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivum L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.

    Review: Make ruminants green again - How can sustainable intensification and agroecology converge for a better future?
    Dumont, B. ; Groot, J.C.J. ; Tichit, M. - \ 2018
    Animal 12 (2018)s2. - ISSN 1751-7311 - p. s210 - s219.
    ecosystem services - efficiency - food systems - redesign - sustainability

    Livestock farming systems provide multiple benefits to humans: protein-rich diets that contribute to food security, employment and rural economies, capital stock and draught power in many developing countries and cultural landscape all around the world. Despite these positive contributions to society, livestock is also the centre of many controversies as regards to its environmental impacts, animal welfare and health outcomes related to excessive meat consumption. Here, we review the potentials of sustainable intensification (SI) and agroecology (AE) in the design of sustainable ruminant farming systems. We analyse the two frameworks in a historical perspective and show that they are underpinned by different values and worldviews about food consumption patterns, the role of technology and our relationship with nature. Proponents of SI see the increase in animal protein demand as inevitable and therefore aim at increasing production from existing farmland to limit further encroachment into remaining natural ecosystems. Sustainable intensification can thus be seen as an efficiency-oriented framework that benefits from all forms of technological development. Proponents of AE appear more open to dietary shifts towards less animal protein consumption to rebalance the whole food system. Agroecology promotes system redesign, benefits from functional diversity and aims at providing regulating and cultural services. We analyse the main criticisms of the two frameworks: Is SI sustainable? How much can AE contribute to feeding the world? Indeed, in SI, social justice has long lacked attention notably with respect to resource allocation within and between generations. It is only recently that some of its proponents have indicated that there is room to include more diversified systems and food-system transformation perspectives and to build socially fair governance systems. As no space is available for agricultural land expansion in many areas, agroecological approaches that emphasise the importance of local production should also focus more on yield increases from agricultural land. Our view is that new technologies and strict certifications offer opportunities for scaling-up agroecological systems. We stress that the key issue for making digital science part of the agroecological transition is that it remains at a low cost and is thus accessible to smallholder farmers. We conclude that SI and AE could converge for a better future by adopting transformative approaches in the search for ecologically benign, socially fair and economically viable ruminant farming systems.

    Multimodel ensembles improve predictions of crop–environment–management interactions
    Wallach, Daniel ; Martre, Pierre ; Liu, Bing ; Asseng, Senthold ; Ewert, Frank ; Thorburn, Peter J. ; Ittersum, Martin van; Aggarwal, Pramod K. ; Ahmed, Mukhtar ; Basso, Bruno ; Biernath, Christian ; Cammarano, Davide ; Challinor, Andrew J. ; Sanctis, Giacomo De; Dumont, Benjamin ; Eyshi Rezaei, Ehsan ; Fereres, Elias ; Fitzgerald, Glenn J. ; Gao, Y. ; Garcia-Vila, Margarita ; Gayler, Sebastian ; Girousse, Christine ; Hoogenboom, Gerrit ; Horan, Heidi ; Izaurralde, Roberto C. ; Jones, Curtis D. ; Kassie, Belay T. ; Kersebaum, Christian C. ; Klein, Christian ; Koehler, Ann Kristin ; Maiorano, Andrea ; Minoli, Sara ; Müller, Christoph ; Naresh Kumar, Soora ; Nendel, Claas ; O'Leary, Garry J. ; Palosuo, Taru ; Priesack, Eckart ; Ripoche, Dominique ; Rötter, Reimund P. ; Semenov, Mikhail A. ; Stöckle, Claudio ; Stratonovitch, Pierre ; Streck, Thilo ; Supit, Iwan ; Tao, Fulu ; Wolf, Joost ; Zhang, Zhao - \ 2018
    Global Change Biology 24 (2018)11. - ISSN 1354-1013 - p. 5072 - 5083.
    climate change impact - crop models - ensemble mean - ensemble median - multimodel ensemble - prediction

    A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2–6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.

    The Hot Serial Cereal Experiment for modeling wheat response to temperature: field experiments and AgMIP-Wheat multi-model simulations
    Martre, Pierre ; Kimball, Bruce A. ; Ottman, Michael J. ; Wall, Gerard W. ; White, Jeffrey W. ; Asseng, Senthold ; Ewert, Frank ; Cammarano, Davide ; Maiorano, Andrea ; Aggarwal, Pramod K. ; Anothai, Jakarat ; Basso, Bruno ; Biernath, Christian ; Challinor, Andrew J. ; Sanctis, Giacomo De; Doltra, Jordi ; Dumont, Benjamin ; Fereres, Elias ; Garcia-Vila, Margarita ; Gayler, Sebastian ; Hoogenboom, Gerrit ; Hunt, Leslie A. ; Izaurralde, Roberto C. ; Jabloun, Mohamed ; Jones, Curtis D. ; Kassie, Belay T. ; Kersebaum, Kurt C. ; Koehler, Ann-Kristin ; Müller, Christoph ; Kumar, Soora Naresh ; Liu, Bing ; Lobell, David B. ; Nendel, Claas ; O'Leary, Garry ; Olesen, Jørgen E. ; Palosuo, Taru ; Priesack, Eckart ; Rezaei, Ehsan Eyshi ; Ripoche, Dominique ; Rötter, Reimund P. ; Semenov, Mikhail A. ; Stöckle, Claudio ; Stratonovitch, Pierre ; Streck, Thilo ; Supit, Iwan ; Tao, Fulu ; Thorburn, Peter ; Waha, Katharina ; Wang, Enli ; Wolf, Joost ; Zhao, Zhigan ; Zhu, Yan - \ 2018
    ODjAR : open data journal for agricultural research 4 (2018). - ISSN 2352-6378 - p. 28 - 34.
    The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environment in the southwest USA. The data reported herewith include one hard red spring wheat cultivar (Yecora Rojo) sown approximately every six weeks from December to August for a two-year period for a total of 11 planting dates out of the 15 of the entire HSC experiment. The treatments were chosen to avoid any effect of frost on grain yields. On late fall, winter and early spring plantings temperature free-air controlled enhancement (T-FACE) apparatus utilizing infrared heaters with supplemental irrigation were used to increase air temperature by 1.3°C/2.7°C (day/night) with conditions equivalent to raising air temperature at constant relative humidity (i.e. as expected with global warming) during the whole crop growth cycle. Experimental data include local daily weather data, soil characteristics and initial conditions, detailed crop measurements taken at three growth stages during the growth cycle, and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.
    Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change
    Fronzek, Stefan ; Pirttioja, Nina ; Carter, Timothy R. ; Bindi, Marco ; Hoffmann, Holger ; Palosuo, Taru ; Ruiz-Ramos, Margarita ; Tao, Fulu ; Trnka, Miroslav ; Acutis, Marco ; Asseng, Senthold ; Baranowski, Piotr ; Basso, Bruno ; Bodin, Per ; Buis, Samuel ; Cammarano, Davide ; Deligios, Paola ; Destain, Marie France ; Dumont, Benjamin ; Ewert, Frank ; Ferrise, Roberto ; François, Louis ; Gaiser, Thomas ; Hlavinka, Petr ; Jacquemin, Ingrid ; Kersebaum, Kurt Christian ; Kollas, Chris ; Krzyszczak, Jaromir ; Lorite, Ignacio J. ; Minet, Julien ; Minguez, M.I. ; Montesino, Manuel ; Moriondo, Marco ; Müller, Christoph ; Nendel, Claas ; Öztürk, Isik ; Perego, Alessia ; Rodríguez, Alfredo ; Ruane, Alex C. ; Ruget, Françoise ; Sanna, Mattia ; Semenov, Mikhail A. ; Slawinski, Cezary ; Stratonovitch, Pierre ; Supit, Iwan ; Waha, Katharina ; Wang, Enli ; Wu, Lianhai ; Zhao, Zhigan ; Rötter, Reimund P. - \ 2018
    Agricultural Systems 159 (2018). - ISSN 0308-521X - p. 209 - 224.
    Classification - Climate change - Crop model - Ensemble - Sensitivity analysis - Wheat

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

    Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment
    Ruiz-Ramos, M. ; Ferrise, R. ; Rodríguez, A. ; Lorite, I.J. ; Bindi, M. ; Carter, T.R. ; Fronzek, S. ; Palosuo, T. ; Pirttioja, N. ; Baranowski, P. ; Buis, S. ; Cammarano, D. ; Chen, Y. ; Dumont, B. ; Ewert, F. ; Gaiser, T. ; Hlavinka, P. ; Hoffmann, H. ; Höhn, J.G. ; Jurecka, F. ; Kersebaum, K.C. ; Krzyszczak, J. ; Lana, M. ; Mechiche-Alami, A. ; Minet, J. ; Montesino, M. ; Nendel, C. ; Porter, J.R. ; Ruget, F. ; Semenov, M.A. ; Steinmetz, Z. ; Stratonovitch, P. ; Supit, I. ; Tao, F. ; Trnka, M. ; Wit, A. De; Rötter, R.P. - \ 2018
    Agricultural Systems 159 (2018). - ISSN 0308-521X - p. 260 - 274.
    Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
    Author Correction: The uncertainty of crop yield projections is reduced by improved temperature response functions
    Wang, Enli ; Martre, Pierre ; Zhao, Zhigan ; Ewert, Frank ; Maiorano, Andrea ; Rötter, Reimund P. ; Kimball, Bruce A. ; Ottman, Michael J. ; Wall, Gerard W. ; White, Jeffrey W. ; Reynolds, Matthew P. ; Alderman, Phillip D. ; Aggarwal, Pramod K. ; Anothai, Jakarat ; Basso, Bruno ; Biernath, Christian ; Cammarano, Davide ; Challinor, Andrew J. ; Sanctis, Giacomo De; Doltra, Jordi ; Dumont, Benjamin ; Fereres, Elias ; Garcia-Vila, Margarita ; Gayler, Sebastian ; Hoogenboom, Gerrit ; Hunt, Leslie A. ; Izaurralde, Roberto C. ; Jabloun, Mohamed ; Jones, Curtis D. ; Kersebaum, Kurt C. ; Koehler, Ann-Kristin ; Liu, Leilei ; Müller, Christoph ; Kumar, Soora Naresh ; Nendel, Claas ; O’Leary, Garry ; Olesen, Jørgen E. ; Palosuo, Taru ; Priesack, Eckart ; Rezaei, Ehsan Eyshi ; Ripoche, Dominique ; Ruane, Alex C. ; Semenov, Mikhail A. ; Shcherbak, Iurii ; Stöckle, Claudio ; Stratonovitch, Pierre ; Streck, Thilo ; Supit, Iwan ; Tao, Fulu ; Thorburn, Peter ; Waha, Katharina ; Wallach, Daniel ; Wang, Zhimin ; Wolf, Joost ; Zhu, Yan ; Asseng, Senthold - \ 2017
    Nature Plants 3 (2017)10. - ISSN 2055-026X - p. 833 - 833.
    Cranial fenestration and adaptive potential in the two basal clades of modern birds
    Gussekloo, S.W.S. ; Berthaume, M.A. ; Pulaski, D.R. ; Westbroek, I. ; Waarsing, J.H. ; Heinen, R. ; Grosse, I.R. ; Dumont, E.R. - \ 2017
    Data from: Functional and evolutionary consequences of cranial fenestration in birds
    Gussekloo, S.W.S. ; Berthaume, Michael A. ; Pulaski, Daniel R. ; Westbroek, Irene ; Waarsing, Jan H. ; Heinen, R. ; Grosse, Ian R. ; Dumont, Elizabeth R. - \ 2017
    Wageningen University & Research
    avian evolution - cranial morphology - fenestration - finite element modelling - adaptive radiation
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modelling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group.
    The uncertainty of crop yield projections is reduced by improved temperature response functions
    Wang, Enli ; Martre, Pierre ; Zhao, Zhigan ; Ewert, Frank ; Maiorano, Andrea ; Rötter, Reimund P. ; Kimball, Bruce A. ; Ottman, Michael J. ; Wall, Gerard W. ; White, Jeffrey W. ; Reynolds, Matthew P. ; Alderman, Phillip D. ; Aggarwal, Pramod K. ; Anothai, Jakarat ; Basso, Bruno ; Biernath, Christian ; Cammarano, Davide ; Challinor, Andrew J. ; Sanctis, Giacomo De; Doltra, Jordi ; Fereres, Elias ; Garcia-Vila, Margarita ; Gayler, Sebastian ; Hoogenboom, Gerrit ; Hunt, Leslie A. ; Izaurralde, Roberto C. ; Jabloun, Mohamed ; Jones, Curtis D. ; Kersebaum, Kurt Christian ; Koehler, Ann Kristin ; Liu, Leilei ; Müller, Christoph ; Naresh Kumar, Soora ; Nendel, Claas ; O'Leary, Garry ; Olesen, Jørgen E. ; Palosuo, Taru ; Priesack, Eckart ; Eyshi Rezaei, Ehsan ; Ripoche, Dominique ; Ruane, Alex C. ; Semenov, Mikhail A. ; Shcherbak, Iurii ; Stöckle, Claudio O. ; Stratonovitch, Pierre ; Streck, Thilo ; Supit, Iwan ; Tao, Fulu ; Thorburn, Peter J. ; Waha, Katharina ; Wallach, Daniel ; Wang, Zhimin ; Wolf, Joost ; Zhu, Yan ; Asseng, Senthold ; Dumont, Benjamin - \ 2017
    Nature Plants 3 (2017). - ISSN 2055-026X
    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
    Functional and evolutionary consequences of cranial fenestration in birds
    Gussekloo, Sander W.S. ; Berthaume, Michael A. ; Pulaski, Daniel R. ; Westbroek, Irene ; Waarsing, Jan H. ; Heinen, Robin ; Grosse, Ian R. ; Dumont, Elizabeth R. - \ 2017
    Evolution 71 (2017)5. - ISSN 0014-3820 - p. 1327 - 1338.
    Adaptive radiation - Avian evolution - Cranial morphology - Fenestration - Finite element modeling
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10,000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, and have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modeling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group.
    Managing a cluster outbreak of psittacosis in Belgium linked to a pet shop visit in The Netherlands
    Boeck, C. De; DeHollogne, C. ; Dumont, A. ; Spierenburg, M. ; Heijne, M. ; Gyssens, I. ; Hilst, J. Van der; Vanrompay, D. - \ 2016
    Epidemiology and Infection (2016). - ISSN 0950-2688 - p. 1710 - 1716.
    Chlamydia psittaci - outbreak - psittacosis - zoonoses

    In July 2013, a Belgian couple were admitted to hospital because of pneumonia. Medical history revealed contact with birds. Eleven days earlier, they had purchased a lovebird in a pet shop in The Netherlands. The bird became ill, with respiratory symptoms. The couple's daughter who accompanied them to the pet shop, reported similar symptoms, but was travelling abroad. On the suspicion of psittacosis, pharyngeal swabs from the couple were taken and sent to the Belgian reference laboratory for psittacosis. Culture and nested polymerase chain reaction (PCR) tests were positive for the presence of Chlamydia psittaci, and ompA genotyping indicated genotype A in both patients. The patients were treated with doxycycline and the daughter started quinolone therapy; all three recovered promptly. Psittacosis is a notifiable disease in Belgium and therefore local healthcare authorities were informed. They contacted their Dutch colleagues, who visited the pet shop. Seven pooled faecal samples were taken and analysed using PCR by the Dutch national reference laboratory for notifiable animal diseases for the presence of Chlamydia psittaci. Four (57%) samples tested positive, genotyping revealed genotype A. Enquiring about exposure to pet birds is essential when patients present with pneumonia. Reporting to health authorities, even across borders, is warranted to prevent further spread.

    Finite element modeling suggests functional divergence in the skulls of palaeognathous and neognathous birds
    Gussekloo, S.W.S. ; Grosse, I.R. ; Berthaume, M. ; Dumont, E.R. - \ 2012
    In: Proceedings of the Society for Integrative and Comparative Biology, 03-07 January 2012, Charleston, South Carolina. - - p. E256 - E256.
    The basal bifurcation in the phylogeny of modern birds is between ostrich-like birds (ratites and tinamous; Palaeognathae) and all other birds (Neognathae). Most differences between the Palaeognathae and Neognathae lie in the reduction or loss of the ability to fly, but the crania of palaeognaths are also more robust and more fenestrated than those of neognathous birds. The specific morphology of the palaeognath cranium has been attributed to neoteny, but recent studies suggest that it must have functional significance. Within the avialan lineage the cranium becomes increasingly fenestrated leading to a reduced number of lateral elements. This trend is more pronounced in palaeognaths than in neognaths. To test how fenestration affects cranial function, we made a finite element model of a neognath (chicken) skull and in two analyses applied experimentally validated forces and displacements to it. We then removed the lateral bars, which are lacking in palaeognaths, and applied the same forces and movements. When the lateral bars were present, we found lower stress concentrations in the maxilla during beak opening, suggesting that lateral bars serve to reinforce the beak. The presence of the lateral bars during beak closing also appears to reinforce cranium as well as increase in beak reaction (bite) force. These results suggest that differences in the degree of fenestration in the skulls of palaeognathous and neognathous birds have functional consequences that may have played a role in the divergence of the two lineages.
    A spatial assessment of ecosystem services in Europe: Methods, case studies and policy analysis - phase 1
    Maes, J. ; Braat, L.C. ; Jax, K. ; Hutchins, M. ; Furman, E. ; Termansen, M. ; Luque, S. ; Paracchini, M.L. ; Chauvin, C. ; Williams, R. ; Volk, M. ; Lautenbach, S. ; Kopperoinen, L. ; Schelhaas, M. ; Weinert, J. ; Goossen, C.M. ; Dumont, E. ; Strauch, M. ; Görg, C. ; Dormann, C. ; Katwinkel, M. ; Zulian, G. ; Varjopuro, R. ; Ratamäki, O. ; Hauck, J. ; Forsius, M. ; Hengeveld, G.M. ; Perez-Soba, M. ; Bouraoui, F. ; Scholz, M. ; Schulz-Zunkel, C. ; Lepistö, A. ; Polishchuck, Y. ; Bidoglio, G. - \ 2011
    Italy : Ispra: Partnership for European Environmental Research (PEER report / Partnership for European Environmental Research 3) - ISBN 9789279209079 - 143
    Future trends in emissions of N2O from rivers and estuaries
    Kroeze, C. ; Dumont, E.L. ; Seitzinger, S. - \ 2010
    Journal of integrative Environmental Sciences 7 (2010)S1. - ISSN 1943-815X - p. 71 - 78.
    Emissions of nitrous oxide (N2O) from aquatic systems such as rivers and estuaries are enhanced as a result of human activities on land resulting in enhanced nitrogen availability in aquatic systems. These human activities include agricultural activities such as fertilizer use, as well as industrial activities resulting in nitrogen (N) losses to the environment. In this article, we analyze past and future trends in global emissions of N2O from rivers and estuaries. We calculate aquatic N2O emissions from trends in the export of nitrogen to coastal waters by world-wide rivers. These trends in riverine N exports are from the Global NEWS models, which are global, regionally explicit models developed in the NEWS (Nutrient Export from WaterShed) framework. The NEWS models calculate nutrient exports from land to coastal waters, taking into account different human activities on the land, as well as biological N2 fixation and different ways in which nitrogen is retained in watersheds, including the effect of dams. We present global total emissions of N2O for the years 1970, 2000, and for four scenarios for 2050, as well as regional patterns
    Future Trends in Emissions of N2O from Rivers, Estuaries and Continental Shelves
    Kroeze, C. ; Dumont, E.L. ; Seitzinger, S.P. - \ 2010
    Check title to add to marked list
    << previous | next >>

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.