Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 2 / 2

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Theoretical approaches to understanding root vascular patterning : A consensus between recent models
    Mellor, Nathan ; Adibi, Milad ; El-Showk, Sedeer ; Rybel, Bert De; King, John ; Mähönen, Ari Pekka ; Weijers, Dolf ; Bishopp, Anthony ; Etchells, Peter - \ 2017
    Journal of Experimental Botany 68 (2017)1. - ISSN 0022-0957 - p. 5 - 16.
    Auxin - Cytokinin - Mathematical modeling - Organ patterning - Systems biology - Vascular development

    The root vascular tissues provide an excellent system for studying organ patterning, as the specification of these tissues signals a transition from radial symmetry to bisymmetric patterns. The patterning process is controlled by the combined action of hormonal signaling/transport pathways, transcription factors, and miRNA that operate through a series of non-linear pathways to drive pattern formation collectively. With the discovery of multiple components and feedback loops controlling patterning, it has become increasingly difficult to understand how these interactions act in unison to determine pattern formation in multicellular tissues. Three independent mathematical models of root vascular patterning have been formulated in the last few years, providing an excellent example of how theoretical approaches can complement experimental studies to provide new insights into complex systems. In many aspects these models support each other; however, each study also provides its own novel findings and unique viewpoints. Here we reconcile these models by identifying the commonalities and exploring the differences between them by testing how transferable findings are between models. New simulations herein support the hypothesis that an asymmetry in auxin input can direct the formation of vascular pattern. We show that the xylem axis can act as a sole source of cytokinin and specify the correct pattern, but also that broader patterns of cytokinin production are also able to pattern the root. By comparing the three modeling approaches, we gain further insight into vascular patterning and identify several key areas for experimental investigation.

    A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots.
    Bishopp, A. ; Help, H. ; El-Showk, S. ; Weijers, D. ; Scheres, B.J.G. ; Friml, J. ; Benkova, E. ; Pekka Mahonen, A. ; Helariutta, Y. - \ 2011
    Current Biology 21 (2011)11. - ISSN 0960-9822 - p. 917 - 926.
    cup-shaped-cotyledon - stem-cell niche - class iiihd-zip - arabidopsis root - meristem activity - hormonal-control - gene family - embryo - efflux - embryogenesis
    Background Whereas the majority of animals develop toward a predetermined body plan, plants show iterative growth and continually produce new organs and structures from actively dividing meristems. This raises an intriguing question: How are these newly developed organs patterned? In Arabidopsis embryos, radial symmetry is broken by the bisymmetric specification of the cotyledons in the apical domain. Subsequently, this bisymmetry is propagated to the root promeristem. Results Here we present a mutually inhibitory feedback loop between auxin and cytokinin that sets distinct boundaries of hormonal output. Cytokinins promote the bisymmetric distribution of the PIN-FORMED (PIN) auxin efflux proteins, which channel auxin toward a central domain. High auxin promotes transcription of the cytokinin signaling inhibitor AHP6, which closes the interaction loop. This bisymmetric auxin response domain specifies the differentiation of protoxylem in a bisymmetric pattern. In embryonic roots, cytokinin is required to translate a bisymmetric auxin response in the cotyledons to a bisymmetric vascular pattern in the root promeristem. Conclusions Our results present an interactive feedback loop between hormonal signaling and transport by which small biases in hormonal input are propagated into distinct signaling domains to specify the vascular pattern in the root meristem. It is an intriguing possibility that such a mechanism could transform radial patterns and allow continuous vascular connections between other newly emerging organs.
    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.