Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

    Records 1 - 4 / 4

    • help
    • print

      Print search results

    • export

      Export search results

    Check title to add to marked list
    Development of an effective and stable genotype-matched live attenuated newcastle disease virus vaccine based on a novel naturally recombinant malaysian isolate using reverse genetics
    Bello, Muhammad Bashir ; Mahamud, Siti Nor Azizah ; Yusoff, Khatijah ; Ideris, Aini ; Hair-Bejo, Mohd ; Peeters, Ben P.H. ; Omar, Abdul Rahman - \ 2020
    Vaccines 8 (2020)2. - ISSN 2076-393X
    Genotype VII - Genotype-matched - Newcastle disease virus - Recombinant vaccine - Reverse genetics

    Genotype VII Newcastle disease viruses are associated with huge economic losses in the global poultry industry. Despite the intensive applications of vaccines, disease outbreaks caused by those viruses continue to occur frequently even among the vaccinated poultry farms. An important factor in the suboptimal protective efficacy of the current vaccines is the genetic mismatch between the prevalent strains and the vaccine strains. Therefore, in the present study, an effective and stable genotype-matched live attenuated Newcastle disease virus (NDV) vaccine was developed using reverse genetics, based on a recently isolated virulent naturally recombinant NDV IBS025/13 Malaysian strain. First of all, the sequence encoding the fusion protein (F) cleavage site of the virus was modified in silico from virulent polybasic (RRQKRF) to avirulent monobasic (GRQGRL) motif. The entire modified sequence was then chemically synthesized and inserted into pOLTV5 transcription vector for virus rescue. A recombinant virus termed mIBS025 was successfully recovered and shown to be highly attenuated based on OIE recommended pathogenicity assessment indices. Furthermore, the virus was shown to remain stably attenuated and retain the avirulent monobasic F cleavage site after 15 consecutive passages in specific-pathogen-free embryonated eggs and 12 passages in one-day-old chicks. More so, the recombinant virus induced a significantly higher hemagglutination inhibition antibody titre than LaSota although both vaccines fully protected chicken against genotype VII NDV induced mortality and morbidity. Finally, mIBS025 was shown to significantly reduce both the duration and quantity of cloacal and oropharyngeal shedding of the challenged genotype VII virus compared to the LaSota vaccine. These findings collectively indicate that mIBS025 provides a better protective efficacy than LaSota and therefore can be used as a promising vaccine candidate against genotype VII NDV strains.

    Exploring the prospects of engineered Newcastle disease virus in modern vaccinology
    Bashir Bello, Muhammad ; Yusoff, Khatijah ; Ideris, Aini ; Hair-Bejo, Mohd ; Hassan Jibril, Abdurrahman ; Peeters, Ben P.H. ; Rahman Omar, Abdul - \ 2020
    Viruses 12 (2020)4. - ISSN 1999-4915
    Cancer - Infectious diseases - Newcastle disease virus - Reverse genetics - Vaccines

    Many traditional vaccines have proven to be incapable of controlling newly emerging infectious diseases. They have also achieved limited success in the fight against a variety of human cancers. Thus, innovative vaccine strategies are highly needed to overcome the global burden of these diseases. Advances in molecular biology and reverse genetics have completely restructured the concept of vaccinology, leading to the emergence of state-of-the-art technologies for vaccine design, development and delivery. Among these modern vaccine technologies are the recombinant viral vectored vaccines, which are known for their incredible specificity in antigen delivery as well as the induction of robust immune responses in the vaccinated hosts. Although a number of viruses have been used as vaccine vectors, genetically engineered Newcastle disease virus (NDV) possesses some useful attributes that make it a preferable candidate for vectoring vaccine antigens. Here, we review the molecular biology of NDV and discuss the reverse genetics approaches used to engineer the virus into an efficient vaccine vector. We then discuss the prospects of the engineered virus as an efficient vehicle of vaccines against cancer and several infectious diseases of man and animals.

    Genotype Diversity of Newcastle Disease Virus in Nigeria : Disease Control Challenges and Future Outlook
    Bello, Muhammad Bashir ; Yusoff, Khatijah Mohd ; Ideris, Aini ; Hair-Bejo, Mohd ; Peeters, Ben P.H. ; Jibril, Abdurrahman Hassan ; Tambuwal, Farouk Muhammad ; Omar, Abdul Rahman - \ 2018
    Advances in Virology 2018 (2018). - ISSN 1687-8639

    Newcastle disease (ND) is one of the most important avian diseases with considerable threat to the productivity of poultry all over the world. The disease is associated with severe respiratory, gastrointestinal, and neurological lesions in chicken leading to high mortality and several other production related losses. The aetiology of the disease is an avian paramyxovirus type-1 or Newcastle disease virus (NDV), whose isolates are serologically grouped into a single serotype but genetically classified into a total of 19 genotypes, owing to the continuous emergence and evolution of the virus. In Nigeria, molecular characterization of NDV is generally very scanty and majorly focuses on the amplification of the partial F gene for genotype assignment. However, with the introduction of the most objective NDV genotyping criteria which utilize complete fusion protein coding sequences in phylogenetic taxonomy, the enormous genetic diversity of the virus in Nigeria became very conspicuous. In this review, we examine the current ecological distribution of various NDV genotypes in Nigeria based on the available complete fusion protein nucleotide sequences (1662 bp) in the NCBI database. We then discuss the challenges of ND control as a result of the wide genetic distance between the currently circulating NDV isolates and the commonest vaccines used to combat the disease in the country. Finally, we suggest future directions in the war against the economically devastating ND in Nigeria.

    Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry : The Current and Emerging Perspectives
    Bello, Muhammad Bashir ; Yusoff, Khatijah ; Ideris, Aini ; Hair-Bejo, Mohd ; Peeters, Ben P.H. ; Omar, Abdul Rahman - \ 2018
    BioMed Research International 2018 (2018). - ISSN 2314-6133 - 18 p.

    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.

    Check title to add to marked list

    Show 20 50 100 records per page

     
    Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.