Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 11 / 11

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Lassaletta
Check title to add to marked list
China’s pig relocation in balance
Bai, Zhaohai ; Jin, Shuqin ; Wu, Yan ; Ermgassen, Erasmus zu; Oenema, Oene ; Chadwick, David ; Lassaletta, Luis ; Velthof, Gerard ; Zhao, Jun ; Ma, Lin - \ 2019
Nature Sustainability 2 (2019)10. - ISSN 2398-9629 - 1 p.
Correction to: Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union
Grinsven, Hans J.M. van; Dam, Jan D. van; Lesschen, Jan Peter ; Timmers, Marloes H.G. ; Velthof, Gerard L. ; Lassaletta, Luis - \ 2019
Regional Environmental Change 19 (2019)6. - ISSN 1436-3798

The article Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union, written by Hans J. M. van Grinsven, Jan D. van Dam, Jan Peter Lesschen, Marloes H. G. Timmers, Gerard L. Velthof, Luis Lassaletta, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 28 May 2018 without open access. With the author(s)’ decision to opt for Open Choice the copyright of the article changed on April 2019 to

Future global pig production systems according to the Shared Socioeconomic Pathways
Lassaletta, Luis ; Estellés, Fernando ; Beusen, Arthur H.W. ; Bouwman, Lex ; Calvet, Salvador ; Grinsven, Hans J.M. Van; Doelman, Jonathan C. ; Stehfest, Elke ; Uwizeye, Aimable ; Westhoek, Henk - \ 2019
Science of the Total Environment 665 (2019). - ISSN 0048-9697 - p. 739 - 751.
Global pork production has increased fourfold over the last 50 years and is expected to continue growing during the next three decades. This may have considerable implications for feed use, land requirements, and nitrogen
emissions. To analyze the development of the pig production sector at the scale of world regions, we developed the IMAGE-Pig model to describe changes in feed demand, feed conversion ratios (FCRs), nitrogen use efficiency (NUE) and nitrogen excretion for backyard, intermediate and intensive systems during the past fewdecades as a basis to explore future scenarios. For each region and production system, total production, productive characteristics and dietary compositions were defined for the 1970–2005 period. The results showthat due to the growing pork production total feed demand has increased by a factor of two (from 229 to 471Tg DM). This is despite the improvement of FCRs during the 1970–2005 period, which has reduced the feed use per kg of product. The increase of nitrogen use efficiency was slower than the improvement of FCRs due to increasing protein content in the feed rations. As a result, total N excretion increased bymore than a factor of two in the 1970–2005 period
(from 4.6 to 11.1 Tg N/year). For the period up to 2050, the Shared Socio-economic Pathways (SSPs) provide information on levels of human consumption, technical development and environmental awareness. The sustainability of pig production systems for the coming decades will be based not only on the expected efficiency
Options for keeping the food system within environmental limits
Springmann, Marco ; Clark, Michael ; Mason-D’Croz, Daniel ; Wiebe, Keith ; Bodirsky, Benjamin Leon ; Lassaletta, Luis ; Vries, Wim de; Vermeulen, Sonja J. ; Herrero, Mario ; Carlson, Kimberly M. ; Jonell, Malin ; Troell, Max ; DeClerck, Fabrice ; Gordon, Line J. ; Zurayk, Rami ; Scarborough, Peter ; Rayner, Mike ; Loken, Brent ; Fanzo, Jess ; Godfray, H.C.J. ; Tilman, David ; Rockström, Johan ; Willett, Walter - \ 2018
Nature 562 (2018)7728. - ISSN 0028-0836 - p. 519 - 525.

The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50–90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.

Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union
Grinsven, Hans J.M. van; Dam, Jan D. van; Lesschen, Jan Peter ; Timmers, Marloes H.G. ; Velthof, Gerard L. ; Lassaletta, Luis - \ 2018
Regional Environmental Change 18 (2018)8. - ISSN 1436-3798 - p. 2403 - 2415.
European Union - External cost - Nitrogen - Pig industry - Spatial optimization

This paper tests the hypothesis that relocation of pig production within the EU27 can reduce the external costs of nitrogen (N) pollution. The external cost of pollution by ammonia and nitrate from agriculture in the European Union (EU27) in 2008 was estimated at 61–215 billion € (0.5 to 1.8% of the GDP). Per capita it ranged from more than 1000 € in north-west EU27 to 50 € in Romania. The average contribution of pig production was 15%. Using provincial data (224 NUTS2 regions in EU27), the potential reduction of external N cost by relocation of pig production was estimated at 14 billion € (10% of the total). Regions most eligible for decreasing the pig stock were in western Germany, Flemish region, Denmark, the Netherlands and Bretagne, while Romania is most eligible for increasing pig production. Relocating 20 million pigs (13% of the total EU stock) decreased average external costs per capita from 900 to 785 € in the 13 NUTS2 regions where pigs were removed and increased from 69 to 107 € in 11 regions receiving pigs. A second alternative configuration of pig production was targeted at reducing exceedance of critical N deposition and closing regional nutrient cycles. This configuration relocates pigs within Germany and France, for example from Bretagne to Northern France and from Weser-Ems to Oberbayern. However, total external cost increases due to an increase of health impacts, unless when combined with implementation of best N management practices. Relocation of the pig industry in the EU27 will meet many socio-economic barriers and realisation requires new policy incentives.

Exploring SSP land-use dynamics using the IMAGE model : Regional and gridded scenarios of land-use change and land-based climate change mitigation
Doelman, Jonathan C. ; Stehfest, Elke ; Tabeau, Andrzej ; Meijl, Hans van; Lassaletta, Luis ; Gernaat, David E.H.J. ; Neumann-Hermans, Kathleen ; Harmsen, Mathijs ; Daioglou, Vassilis ; Biemans, Hester ; Sluis, Sietske van der; Vuuren, Detlef P. van - \ 2018
Global environmental change : human and policy dimensions 48 (2018). - ISSN 0959-3780 - p. 119 - 135.
Bioenergy - Climate change mitigation - Integrated assessment - Land-use change - REDD - Shared Socio-economic Pathways (SSPs)
Projected increases in population, income and consumption rates are expected to lead to rising pressure on the land system. Ambitions to limit global warming to 2 °C or even 1.5 °C could also lead to additional pressures from land-based mitigation measures such as bioenergy production and afforestation. To investigate these dynamics, this paper describes five elaborations of the Shared Socio-economic Pathways (SSP) using the IMAGE 3.0 integrated assessment model framework to produce regional and gridded scenarios up to the year 2100. Additionally, land-based climate change mitigation is modelled aiming for long-term mitigation targets including 1.5 °C. Results show diverging global trends in agricultural land in the baseline scenarios ranging from an expansion of nearly 826 Mha in SSP3 to a decrease of more than 305 Mha in SSP1 for the period 2010–2050. Key drivers are population growth, changes in food consumption, and agricultural efficiency. The largest changes take place in Sub-Saharan Africa in SSP3 and SSP4, predominantly due to high population growth. With low increases in agricultural efficiency this leads to expansion of agricultural land and reduced food security. Land use also plays a crucial role in ambitious mitigation scenarios. First, agricultural emissions could form a substantial component of emissions that cannot be fully mitigated. Second, bioenergy and reforestation are crucial to create net negative emissions reducing emissions in SSP2 in 2050 by 8.7 Gt CO2/yr and 1.9 Gt CO2/yr, respectively (1.5 °C scenario compared to baseline). This is achieved by expansion of bioenergy area (516 Mha in 2050) and reforestation. Expansion of agriculture for food production is reduced due to REDD policy (290 Mha in 2050) affecting food security especially in Sub-Saharan Africa indicating an important trade-off of land-based mitigation. This set of SSP land-use scenarios provides a comprehensive quantification of interacting trends in the land system, both socio-economic and biophysical. By providing high resolution data, the scenario output can improve interactions between climate research and impact studies.
Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm
Vuuren, Detlef P. van; Stehfest, Elke ; Gernaat, David E.H.J. ; Doelman, Jonathan C. ; Berg, Maarten van den; Harmsen, Mathijs ; Boer, Harmen Sytze de; Bouwman, Lex F. ; Daioglou, Vassilis ; Edelenbosch, Oreane Y. ; Girod, Bastien ; Kram, Tom ; Lassaletta, Luis ; Lucas, Paul L. ; Meijl, Hans van; Müller, Christoph ; Ruijven, Bas J. van; Sluis, Sietske van der; Tabeau, Andrzej - \ 2017
Global environmental change : human and policy dimensions 42 (2017). - ISSN 0959-3780 - p. 237 - 250.
Climate change research - Integrated assessment - Scenarios - Shared Socio-economic Pathways (SSPs) - Sustainable development

This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 °C (SSP1 reference scenario) to 2 or 1.5 °C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.

Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review
Sanz-Cobena, A. ; Lassaletta, L. ; Aguilera, E. ; Prado, A. Del; Garnier, J. ; Billen, G. ; Iglesias, A. ; Sánchez, B. ; Guardia, G. ; Abalos Rodriguez, Diego ; Plaza-Bonilla, D. ; Puigdueta-bartolomé, I. ; Moral, R. ; Galán, E. ; Arriaga, H. ; Merino, P. ; Infante-Amate, J. ; Meijide, A. ; Pardo, G. ; Álvaro-Fuentes, J. ; Gilsanz, C. ; Báez, D. ; Doltra, J. ; González-Ubierna, S. ; Cayuela, M.L. ; Menéndez, S. ; Díaz-Pinés, E. ; Le-Noë, J. ; Quemada, M. ; Estellés, F. ; Calvet, S. ; Grinsven, H.J.M. Van; Westhoek, H. ; Sanz, M.J. ; Gimeno, B.S. ; Vallejo, A. ; Smith, P. - \ 2017
Agriculture, Ecosystems and Environment 238 (2017). - ISSN 0167-8809 - p. 5 - 24.
An integrated assessment of the potential of different management practices for mitigating specific components of the total GHG budget (N2O and CH4 emissions and C sequestration) of Mediterranean agrosystems was performed in this study. Their suitability regarding both yield and environmental (e.g. nitrate leaching and ammonia volatilization) sustainability, and regional barriers and opportunities for their implementation were also considered. Based on its results best strategies to abate GHG emissions in Mediterranean agro-systems were proposed. Adjusting N fertilization to crop needs in both irrigated and rain-fed systems could reduce N2O emissions up to 50% compared with a non-adjusted practice. Substitution of N synthetic fertilizers by solid manure can be also implemented in those systems, and may abate N2O emissions by about 20% under Mediterranean conditions, with additional indirect benefits associated to energy savings and positive effects in crop yields. The use of urease and nitrification inhibitors enhances N use efficiency of the cropping systems and may mitigate N2O emissions up to 80% and 50%, respectively. The type of irrigation may also have a great mitigation potential in the Mediterranean region. Drip-irrigated systems have on average 80% lower N2O emissions than sprinkler systems and drip-irrigation combined with optimized fertilization showed a reduction in direct N2O emissions up to 50%. Methane fluxes have a relatively small contribution to the total GHG budget of Mediterranean crops, which can mostly be controlled by careful management of the water table and organic inputs in paddies. Reduced soil tillage, improved management of crop residues and agro-industry by-products, and cover cropping in orchards, are the most suitable interventions to enhance organic C stocks in Mediterranean agricultural soils. The adoption of the proposed agricultural practices will require farmers training. The global analysis of life cycle emissions associated to irrigation type (drip, sprinkle and furrow) and N fertilization rate (100 and 300 kg N ha−1 yr−1) revealed that these factors may outweigh the reduction in GHG emissions beyond the plot scale. The analysis of the impact of some structural changes on top-down mitigation of GHG emissions revealed that 3–15% of N2O emissions could be suppressed by avoiding food waste at the end-consumer level. A 40% reduction in meat and dairy consumption could reduce GHG emissions by 20–30%. Reintroducing the Mediterranean diet (i.e. ∼35% intake of animal protein) would therefore result in a significant decrease of GHG emissions from agricultural production systems under Mediterranean conditions.
Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland
Bouwman, A.F. ; Beusen, A.H.W. ; Lassaletta, L. ; Apeldoorn, D.F. Van; Grinsven, H.J.M. Van; Zhang, J. ; Ittersum, Martin van - \ 2017
Scientific Reports 7 (2017). - ISSN 2045-2322
In recent decades farmers in high-income countries and China and India have built up a large reserve of residual soil P in cropland. This reserve can now be used by crops, and in high-income countries the use of mineral P fertilizer has recently been decreasing with even negative soil P budgets in Europe. In contrast to P, much of N surpluses are emitted to the environment via air and water and large quantities of N are transported in aquifers with long travel times (decades and longer). N fertilizer use in high-income countries has not been decreasing in recent years; increasing N use efficiency and utilization of accumulated residual soil P allowed continued increases in crop yields. However, there are ecological risks associated with the legacy of excessive nutrient mobilization in the 1970s and 1980s. Landscapes have a memory for N and P; N concentrations in many rivers do not respond to increased agricultural N use efficiency, and European water quality is threatened by rapidly increasing N:P ratios. Developing countries can avoid such problems by integrated management of N, P and other nutrients accounting for residual soil P, while avoiding legacies associated with the type of past or continuing mismanagement of high-income countries, China and India.
Direct nitrous oxide emissions in Mediterranean climate cropping systems : Emission factors based on a meta-analysis of available measurement data
Cayuela, Maria L. ; Aguilera, Eduardo ; Sanz-Cobena, Alberto ; Adams, Dean C. ; Abalos Rodriguez, Diego ; Barton, Louise ; Ryals, Rebecca ; Silver, Whendee L. ; Alfaro, Marta A. ; Pappa, Valentini A. ; Bouwman, Lex ; Lassaletta, Luis - \ 2017
Agriculture, Ecosystems and Environment 238 (2017). - ISSN 0167-8809 - p. 25 - 35.
Field studies - Greenhouse gases - Mitigation - NO - Systematic review

Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for N2O, distinguishing the effects of water management, crop type, and fertilizer management. The average overall EF for Mediterranean agriculture (EFMed) was 0.5%, which is substantially lower than the IPCC default value of 1%. Soil properties had no significant effect on EFs for N2O. Increasing the N fertilizer rate led to higher EFs; when N was applied at rates greater than 400kgNha-1, the EF did not significantly differ from the 1% default value (EF: 0.82%). Liquid slurries led to emissions that did not significantly differ from 1%; the other fertilizer types were lower but did not significantly differ from each other. Rain-fed crops in Mediterranean regions have lower EFs (EF: 0.27%) than irrigated crops (EF: 0.63%). Drip irrigation systems (EF: 0.51%) had 44% lower EF than sprinkler irrigation methods (EF: 0.91%). Extensive crops, such as winter cereals (wheat, oat and barley), had lower EFs (EF: 0.26%) than intensive crops such as maize (EF: 0.83%). For flooded rice, anaerobic conditions likely led to complete denitrification and low EFs (EF: 0.19%). Our results indicate that N2O emissions from Mediterranean agriculture are overestimated in current national greenhouse gas inventories and that, with the new EF determined from this study, the effect of mitigation strategies such as drip irrigation or the use of nitrification inhibitors, even if highly significant, may be smaller in absolute terms.

Impacts of European livestock production : Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity
Leip, Adrian ; Billen, Gilles ; Garnier, Josette ; Grizzetti, Bruna ; Lassaletta, Luis ; Reis, Stefan ; Simpson, David ; Sutton, M.A. ; Vries, Wim De; Weiss, Franz ; Westhoek, Henk - \ 2015
Environmental Research Letters 10 (2015)11. - ISSN 1748-9326
air quality - biodiversity loss - climate change - coastal eutrophication - European Union - livestock production - soil acidification

Livestock production systems currently occupy around 28% of the land surface of the European Union (equivalent to 65% of the agricultural land). In conjunction with other human activities, livestock production systems affect water, air and soil quality, global climate and biodiversity, altering the biogeochemical cycles of nitrogen, phosphorus and carbon. Here, we quantify the contribution of European livestock production to these major impacts. For each environmental effect, the contribution of livestock is expressed as shares of the emitted compounds and land used, as compared to the whole agricultural sector. The results show that the livestock sector contributes significantly to agricultural environmental impacts. This contribution is 78% for terrestrial biodiversity loss, 80% for soil acidification and air pollution (ammonia and nitrogen oxides emissions), 81% for global warming, and 73% for water pollution (both N and P). The agriculture sector itself is one of the major contributors to these environmental impacts, ranging between 12% for global warming and 59% for N water quality impact. Significant progress in mitigating these environmental impacts in Europe will only be possible through a combination of technological measures reducing livestock emissions, improved food choices and reduced food waste of European citizens.

Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.